Gunes Ilayda, Bernstein Elana J, Cowper Shawn E, Panse Gauri, Pradhan Niki, Camacho Lucy Duran, Page Nicolas, Bundschuh Elizabeth, Williams Alyssa, Carns Mary, Aren Kathleen, Fantus Sarah, Volkmann Elizabeth R, Bukiri Heather, Correia Chase, Kolachalama Vijaya B, Wilson F Perry, Mawe Seamus, Mahoney J Matthew, Hinchcliff Monique
Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, Yale School of Medicine, New Haven, USA.
Department of Medicine, Division of Rheumatology, Columbia University Irving Medical Center, New York, USA.
Arthritis Res Ther. 2025 Apr 11;27(1):85. doi: 10.1186/s13075-025-03508-9.
The modified Rodnan skin score (mRSS), a measure of systemic sclerosis (SSc) skin thickness, is agnostic to inflammation and vasculopathy. Previously, we demonstrated the potential of neural network-based digital pathology applied to SSc skin biopsies as a quantitative outcome. Here, we leverage deep learning and histologic analyses of clinical trial biopsies to decipher SSc skin features 'seen' by artificial intelligence (AI).
Adults with diffuse cutaneous SSc ≤ 6 years were enrolled in an open-label trial of belumosudil [a Rho-associated coiled-coil containing protein kinase 2 (ROCK2) inhibitor]. Participants underwent serial mRSS and arm biopsies at week (W) 0, 24 and 52. Two blinded dermatopathologists scored stained sections (e.g., Masson's trichrome, hematoxylin and eosin, CD3, α-smooth muscle actin) for 16 published SSc dermal pathological parameters. We applied our deep learning model to generate QIF signatures/biopsy and obtain 'Fibrosis Scores'. Associations between Fibrosis Score and mRSS (Spearman correlation), and between Fibrosis Score and mRSS versus histologic parameters [odds ratios (OR)], were determined.
Only ten patients were enrolled due to early study termination, and of those, five had available biopsies due to fixation issues. Median, interquartile range (IQR) for mRSS change (0-52 W) for the ten participants was -2 (-9-7.5) and for the five with biopsies was -2.5 (-11-7.5). The correlation between Fibrosis Score and mRSS was R = 0.3; p = 0.674. Per 1-unit mRSS change (0-52 W), histologic parameters with the greatest associated changes were (OR, 95% CI, p-value): telangiectasia (2.01, [(1.31-3.07], 0.001), perivascular CD3 + (0.99, [0.97-1.02], 0.015), and % of CD8 + among CD3 + (0.95, [0.89-1.01], 0.031). Likewise, per 1-unit Fibrosis Score change, parameters with greatest changes were (OR, p-value): hyalinized collagen (1.1, [1.04 - 1.16], < 0.001), subcutaneous (SC) fat loss (1.47, [1.19-1.81], < 0.001), thickened intima (1.21, [1.06-1.38], 0.005), and eccrine entrapment (1.14, [1-1.31], 0.046).
Belumosudil was associated with non-clinically meaningful mRSS improvement. The histologic features that significantly correlated with Fibrosis Score changes (e.g., hyalinized collagen, SC fat loss) were distinct from those associated with mRSS changes (e.g., telangiectasia and perivascular CD3 +). These data suggest that AI applied to SSc biopsies may be useful for quantifying pathologic features of SSc beyond skin thickness.
改良的罗德南皮肤评分(mRSS)是系统性硬化症(SSc)皮肤厚度的一种测量方法,与炎症和血管病变无关。此前,我们证明了基于神经网络的数字病理学应用于SSc皮肤活检作为一种定量结果的潜力。在此,我们利用深度学习和对临床试验活检组织的组织学分析来解读人工智能(AI)“看到”的SSc皮肤特征。
年龄≤6岁的弥漫性皮肤型SSc成人患者参加了一项关于贝拉莫德(一种含Rho相关卷曲螺旋蛋白激酶2(ROCK2)抑制剂)的开放标签试验。参与者在第0、24和52周接受了系列mRSS测量和手臂活检。两名盲法皮肤科病理学家对染色切片(如Masson三色染色、苏木精和伊红染色、CD3、α平滑肌肌动蛋白)进行评分,以评估16项已发表的SSc皮肤病理参数。我们应用深度学习模型生成定量图像特征(QIF)特征/活检结果并获得“纤维化评分”。确定了纤维化评分与mRSS之间的相关性(Spearman相关性),以及纤维化评分与mRSS和组织学参数之间的相关性[比值比(OR)]。
由于早期研究终止,仅招募了10名患者,其中5名因固定问题有可用的活检组织。10名参与者的mRSS变化(0 - 52周)的中位数、四分位间距(IQR)为 -2(-9 - 7.5),有活检组织的5名参与者为 -2.5(-11 - 7.5)。纤维化评分与mRSS之间的相关性为R = 0.3;p = 0.674。每1单位mRSS变化(0 - 52周),相关性变化最大的组织学参数为(OR,95%置信区间,p值):毛细血管扩张(2.01,[1.31 - 3.07],0.001)、血管周围CD3 +(0.99,[0.97 - 1.02],0.015)以及CD3 +中CD8 +的百分比(0.95,[0.89 - 1.01],0.031)。同样,每1单位纤维化评分变化,变化最大的参数为(OR,p值):透明化胶原(1.1,[1.04 - 1.16],<0.001)、皮下(SC)脂肪减少(1.47,[1.19 - 1.81],<0.001)、内膜增厚(1.21,[1.06 - 1.38],0.005)和汗腺包埋(1.14,[1 - 1.31],0.046)。
贝拉莫德与mRSS的改善无临床意义相关。与纤维化评分变化显著相关的组织学特征(如透明化胶原、SC脂肪减少)与与mRSS变化相关的特征(如毛细血管扩张和血管周围CD3 +)不同。这些数据表明,应用于SSc活检组织的AI可能有助于量化SSc除皮肤厚度之外的病理特征。