Suppr超能文献

动态物联网环境中LoRa网络的自适应实时信道估计与参数调整

Adaptive Real-Time Channel Estimation and Parameter Adjustment for LoRa Networks in Dynamic IoT Environments.

作者信息

Alghamdi Fatimah, Bajaber Fuad

机构信息

Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

出版信息

Sensors (Basel). 2025 Mar 27;25(7):2121. doi: 10.3390/s25072121.

Abstract

This study addresses the challenges of real-time channel state estimation and adaptive parameter adjustment in dynamic LoRa networks, where the existing methods often fail to adapt efficiently to highly variable channel conditions. This study presents an innovative approach for real-time channel state estimation and adaptive parameter adjustment in long-range (LoRa) networks in dynamic Internet of Things (IoT) environments. When these types of networks are used in dynamic IoT environments, they are known to face challenges in the two above-mentioned areas. In our approach, a hybrid feature extraction method that integrates statistical analysis with domain-specific knowledge is utilized for real-time data labeling, focusing on the signal-to-noise (SNR) and received signal strength indicator (RSSI) metrics. This approach employs an adaptive sliding window technique for efficient processing of recent data. Subsequently, a multi-task long short-term memory (LSTM) neural network is introduced for the simultaneous prediction of multiple channel states. This multi-task model employs an online incremental learning approach to enhance the real-time performance and responsiveness of the model within dynamic environments. It also incorporates a confidence measure for estimated states to increase the prediction reliability. Finally, based on the confidence measure predictions and channel state estimation, the system dynamically adjusts the LoRa parameters, including the spreading factor, coding rate, transmission power, and bandwidth. Our results demonstrate that the confidence-based adaptive strategy coupled with adaptive sliding window processing and incremental learning effectively balances performance optimization with stability in challenging IoT scenarios. This study contributes a robust, data-driven approach for real-time channel state estimation and adaptive parameter control, addressing the unique challenges of IoT networks in dynamic environments. Our approach achieved a packet delivery ratio of 100%, reduced energy consumption to 0.07987 Joules per packet, and demonstrated a prediction accuracy between 97.70% and 97.9% for estimating the different channel states. This innovative framework provides significant improvements in channel state estimation, communication reliability, adaptive parameter control, and computational efficiency, thereby ensuring robust performance in IoT environments at the same time.

摘要

本研究解决了动态LoRa网络中实时信道状态估计和自适应参数调整的挑战,现有方法往往无法有效适应高度可变的信道条件。本研究提出了一种在动态物联网(IoT)环境中的长距离(LoRa)网络中进行实时信道状态估计和自适应参数调整的创新方法。当这些类型的网络用于动态物联网环境时,它们在上述两个领域面临挑战。在我们的方法中,一种将统计分析与特定领域知识相结合的混合特征提取方法用于实时数据标记,重点关注信噪比(SNR)和接收信号强度指示符(RSSI)指标。该方法采用自适应滑动窗口技术对近期数据进行高效处理。随后,引入了多任务长短期记忆(LSTM)神经网络来同时预测多个信道状态。这个多任务模型采用在线增量学习方法来提高模型在动态环境中的实时性能和响应能力。它还为估计状态引入了一种置信度度量,以提高预测可靠性。最后,基于置信度度量预测和信道状态估计,系统动态调整LoRa参数,包括扩频因子、编码率、发射功率和带宽。我们的结果表明,基于置信度的自适应策略与自适应滑动窗口处理和增量学习相结合,在具有挑战性的物联网场景中有效地平衡了性能优化与稳定性。本研究为实时信道状态估计和自适应参数控制贡献了一种强大的、数据驱动的方法,解决了动态环境中物联网网络的独特挑战。我们的方法实现了100%的数据包传输率,将能耗降低到每数据包0.07987焦耳,并在估计不同信道状态时展示了97.70%至97.9%的预测准确率。这个创新框架在信道状态估计、通信可靠性、自适应参数控制和计算效率方面有显著改进,从而同时确保了物联网环境中的稳健性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5273/11991203/1ad7def70f20/sensors-25-02121-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验