Otto Raphael, Cardona Ava, Preußner Alexander M, Ali Wael, Gutmann Jochen S, Mayer-Gall Thomas
Institute of Physical Chemistry and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstraße 2, 45117 Essen, Germany.
Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstr 1, 47798 Krefeld, Germany.
Polymers (Basel). 2025 Mar 28;17(7):924. doi: 10.3390/polym17070924.
This study explores how functionalized aromatic P-FRs, specifically phenyl- and phenoxy-based phosphoric acid derivatives, influence the flame retardancy of cotton textiles. By systematically investigating derivatives with varying degrees of phenyl, phenoxy, and acidic hydroxyl terminations, alongside ortho-phosphoric acid as a reference, this work aimed to elucidate the role of aromaticity and functional group composition on both gas- and condensed-phase flame retardant efficacy. Cotton fabrics were treated with comparable phosphorus loadings (~3 g/m), quantified using inductively coupled plasma optical emission spectroscopy (ICP-OES), to evaluate the gas- and condensed-phase efficacy of the flame retardants. Notably, derivatives with a higher number of acidic hydroxyl terminations exhibited the best flame retardant performance, enhancing char formation through dehydration and condensation reactions during combustion. Thermal analysis (TGA) and microscale combustion calorimetry (MCC) confirmed that phenoxy systems catalyze cotton decomposition more effectively, promoting dehydration through the hydrolysis of phenoxy groups. Furthermore, IR analysis of evolved gases revealed a significant reduction in volatile emissions for phenoxy systems, while this was not observed for phenyl derivatives. These findings underscore the importance of robust condensed-phase mechanisms for achieving effective flame retardancy in cotton textiles.
本研究探讨了功能化芳族磷系阻燃剂,特别是苯基和苯氧基磷酸衍生物,如何影响棉织物的阻燃性。通过系统研究具有不同程度苯基、苯氧基和酸性羟基端基的衍生物,以及以正磷酸作为参考,这项工作旨在阐明芳香性和官能团组成对气相和凝聚相阻燃效果的作用。使用电感耦合等离子体发射光谱法(ICP-OES)对棉织物进行了磷含量相当(约3 g/m)的处理,以评估阻燃剂在气相和凝聚相的效果。值得注意的是,具有较多酸性羟基端基的衍生物表现出最佳的阻燃性能,通过燃烧过程中的脱水和缩合反应增强了炭的形成。热分析(TGA)和微尺度燃烧量热法(MCC)证实,苯氧基体系能更有效地催化棉的分解,通过苯氧基的水解促进脱水。此外,对逸出气体的红外分析表明,苯氧基体系的挥发性排放物显著减少,而苯基衍生物则未观察到这种情况。这些发现强调了强大的凝聚相机制对于实现棉织物有效阻燃的重要性。