Zhou Zhongwei, Xue Jiawen, Wu Yue, Mao Jingjing, Li Cheng, Yu Xianghai, Ma Changping, Zhao Guizhi
Department of Oral and Maxillofacial Surgery, General Hospital of Ningxia Medical University, No. 804, Sheng Li South Road, Yinchuan, Ningxia 750004, P.R. China.
Department of Stomatology, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical Universityl, No. 301, Zhengyuan North Street, Jinfeng District, Yinchuan, Ningxia 750001, P.R. China.
Int J Med Inform. 2025 Aug;200:105904. doi: 10.1016/j.ijmedinf.2025.105904. Epub 2025 Mar 30.
To develop an AI-based diagnostic model for assessing cervical lymph nodes in head and neck malignant tumors using MRI, enabling non-invasive pre-surgical metastasis diagnosis.
Fifty-three cases of head and neck malignant tumors were retrospectively analyzed, including 157 metastatic lymph nodes and 2,406 MRI images. The dataset was split into training, validation, and test sets. A convolutional neural network (CNN) model was optimized through ablation and comparative experiments, and its diagnostic performance was evaluated using metrics such as average precision (AP), recall (AR), and mean average precision (mAP). A clinical evaluation compared the model's diagnostic efficiency to senior and junior physicians, assessing accuracy, sensitivity, specificity, predictive values, and area under the curve (AUC).
The model achieved detection and segmentation metrics of APdet 74.88 %, APseg 74.12 %, ARdet 63.11 %, ARseg 62.28 %, mAPdet 74.64 %, and mAPseg 74.04 %. Diagnostic accuracy was 83.6 %, with sensitivity 81.3 %, specificity 85.9 %, and an AUC of 0.834. The model processed the test set in 400 s (under 1 s per image), outperforming senior (AUC 0.706) and junior physicians (AUC 0.650), who required 1368 and 2276 s, respectively (p < 0.001).
The LNMS Net model enhances diagnostic accuracy and efficiency for head and neck malignant tumors, supporting precise treatment planning and reducing overtreatment risks. It also offers a foundation for extending AI-based lymph node metastasis diagnosis to other clinical areas.
开发一种基于人工智能的诊断模型,用于利用磁共振成像(MRI)评估头颈部恶性肿瘤的颈部淋巴结,实现术前非侵入性转移诊断。
回顾性分析53例头颈部恶性肿瘤病例,包括157个转移性淋巴结和2406张MRI图像。将数据集分为训练集、验证集和测试集。通过消融和对比实验优化卷积神经网络(CNN)模型,并使用平均精度(AP)、召回率(AR)和平均平均精度(mAP)等指标评估其诊断性能。进行临床评估,将模型的诊断效率与 senior 和 junior 医生进行比较,评估准确性、敏感性、特异性、预测值和曲线下面积(AUC)。
该模型实现的检测和分割指标为:APdet 74.88%、APseg 74.12%、ARdet 63.11%、ARseg 62.28%、mAPdet 74.64%和 mAPseg 74.04%。诊断准确性为83.6%,敏感性为81.3%,特异性为85.9%,AUC为0.834。该模型在400秒内处理测试集(每张图像不到1秒),优于分别需要1368秒和2276秒的 senior 医生(AUC 0.706)和 junior 医生(AUC 0.650)(p < 0.001)。
LNMS Net 模型提高了头颈部恶性肿瘤的诊断准确性和效率,支持精确的治疗规划并降低过度治疗风险。它还为将基于人工智能的淋巴结转移诊断扩展到其他临床领域提供了基础。