Suppr超能文献

通过动态重构调节Ru-O键的共价性以实现高效的酸性析氧反应。

Modulating the covalency of Ru-O bonds by dynamic reconstruction for efficient acidic oxygen evolution.

作者信息

Wang Luqi, Hung Sung-Fu, Zhao Sheng, Wang Yue, Bi Suwan, Li Shaoxiong, Ma Jian-Jie, Zhang Chenchen, Zhang Ying, Li Linlin, Chen Tsung-Yi, Chen Han-Yi, Hu Feng, Wu Yuping, Peng Shengjie

机构信息

College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.

Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.

出版信息

Nat Commun. 2025 Apr 13;16(1):3502. doi: 10.1038/s41467-025-58654-0.

Abstract

Developing ruthenium-based oxide catalysts capable of suppressing lattice oxygen participation in the catalytic reaction process is crucial for maintaining stable oxygen evolution reaction (OER) under acidic conditions. Herein, we delicately construct a RuO nanoparticle-anchored LiCoO nanosheet electrocatalyst (RuO/LiCoO), achieving dynamic optimization of RuO during the reaction process and improving catalytic stability. Benefiting from the unique electrochemical delithiation characteristics of the LiCoO support, the covalency of the Ru-O bond is effectively regulated during the OER process. The weakened Ru-O covalent bond inhibits the participation of lattice oxygen in the catalytic reaction and ensures the continuous operation of the Ru active sites. Moreover, the extended Ru-O bond in the optimized RuO/LiCoO catalyst reduces the formation energy barrier of the *OOH intermediates, accelerating the progress of the OER. As a result, the RuO/LiCoO catalyst requires only an overpotential of 150 ± 2 mV at 10 mA cm in 0.5 M HSO and operates stably for 2000 h at 1 A cm in a proton exchange membrane water electrolysis. This work opens new avenues for designing efficient ruthenium-based catalysts.

摘要

开发能够抑制晶格氧参与催化反应过程的钌基氧化物催化剂对于在酸性条件下维持稳定的析氧反应(OER)至关重要。在此,我们精心构建了一种RuO纳米颗粒锚定的LiCoO纳米片电催化剂(RuO/LiCoO),在反应过程中实现了RuO的动态优化并提高了催化稳定性。受益于LiCoO载体独特的电化学脱锂特性,在OER过程中Ru-O键的共价性得到有效调控。减弱的Ru-O共价键抑制了晶格氧参与催化反应,并确保了Ru活性位点的持续运行。此外,优化后的RuO/LiCoO催化剂中扩展的Ru-O键降低了*OOH中间体的形成能垒,加速了OER的进程。结果,RuO/LiCoO催化剂在0.5 M HSO中10 mA cm时仅需150±2 mV的过电位,并且在质子交换膜水电解中在1 A cm下稳定运行2000小时。这项工作为设计高效的钌基催化剂开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b81d/11993612/884d154e62d2/41467_2025_58654_Fig1_HTML.jpg

相似文献

1
2
Regulating Ru-Ru Distance in RuO Catalyst by Lattice Hydroxyl for Efficient Water Oxidation.
ACS Nano. 2025 May 20;19(19):18513-18521. doi: 10.1021/acsnano.5c01937. Epub 2025 May 6.
3
La-Doping-Induced Lattice Strain and Electronic State Modulation in RuO for Electrocatalytic Oxygen Evolution in Acidic Solutions.
Inorg Chem. 2025 Mar 10;64(9):4571-4579. doi: 10.1021/acs.inorgchem.4c05585. Epub 2025 Feb 25.
4
Strain-modulated Ru-O Covalency in Ru-Sn Oxide Enabling Efficient and Stable Water Oxidation in Acidic Solution.
Angew Chem Int Ed Engl. 2024 Feb 19;63(8):e202316029. doi: 10.1002/anie.202316029. Epub 2024 Jan 18.
5
Oxyanion Engineering on RuO for Efficient Proton Exchange Membrane Water Electrolysis.
Angew Chem Int Ed Engl. 2024 Nov 18;63(47):e202413653. doi: 10.1002/anie.202413653. Epub 2024 Oct 15.
6
Locking the lattice oxygen in RuO to stabilize highly active Ru sites in acidic water oxidation.
Nat Commun. 2024 Mar 20;15(1):2501. doi: 10.1038/s41467-024-46815-6.
7
Oxygen Radical Coupling on Short-Range Ordered Ru Atom Arrays Enables Exceptional Activity and Stability for Acidic Water Oxidation.
J Am Chem Soc. 2024 May 15;146(19):12958-12968. doi: 10.1021/jacs.3c13248. Epub 2024 May 2.
8
Dynamic-Cycling Zinc Sites Promote Ruthenium Oxide for Sub-Ampere Electrochemical Water Oxidation.
Nano Lett. 2024 Dec 18;24(50):16055-16063. doi: 10.1021/acs.nanolett.4c04485. Epub 2024 Dec 6.
9
Modulating OOH Adsorption on RuO for Efficient and Durable Acidic Water Oxidation Electrocatalysis.
Small. 2024 Nov;20(45):e2404092. doi: 10.1002/smll.202404092. Epub 2024 Jul 22.
10
Modulating the Electronic Structure of RuO through Cr Solubilizing for Improved Oxygen Evolution Reaction.
Small Methods. 2022 Sep;6(9):e2200636. doi: 10.1002/smtd.202200636. Epub 2022 Jul 25.

本文引用的文献

2
Lanthanide-regulating Ru-O covalency optimizes acidic oxygen evolution electrocatalysis.
Nat Commun. 2024 Jun 11;15(1):4974. doi: 10.1038/s41467-024-49281-2.
4
Atomically dispersed hexavalent iridium oxide from MnO reduction for oxygen evolution catalysis.
Science. 2024 May 10;384(6696):666-670. doi: 10.1126/science.adg5193. Epub 2024 May 9.
5
Locking the lattice oxygen in RuO to stabilize highly active Ru sites in acidic water oxidation.
Nat Commun. 2024 Mar 20;15(1):2501. doi: 10.1038/s41467-024-46815-6.
7
Spatial configuration of Fe-Co dual-sites boosting catalytic intermediates coupling toward oxygen evolution reaction.
Proc Natl Acad Sci U S A. 2024 Feb 6;121(6):e2317247121. doi: 10.1073/pnas.2317247121. Epub 2024 Jan 31.
8
Dual-axial engineering on atomically dispersed catalysts for ultrastable oxygen reduction in acidic and alkaline solutions.
Proc Natl Acad Sci U S A. 2024 Feb 6;121(6):e2318174121. doi: 10.1073/pnas.2318174121. Epub 2024 Jan 30.
9
Manipulating the Spin State of Co Sites in Metal-Organic Frameworks for Boosting CO Photoreduction.
J Am Chem Soc. 2024 Feb 7;146(5):3241-3249. doi: 10.1021/jacs.3c11446. Epub 2024 Jan 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验