She Sixuan, Chen Hsiao-Chien, Chen Changsheng, Zhu Yanping, Chen Gao, Song Yufei, Xiao Yiping, Lin Zezhou, Zu Di, Peng Luwei, Li Hao, Zhu Ye, Tsang Yuen Hong, Huang Haitao
Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
Center for Reliability Science and Technologies, Chang Gung University, Taoyuan 33302, Taiwan.
ACS Nano. 2025 May 20;19(19):18513-18521. doi: 10.1021/acsnano.5c01937. Epub 2025 May 6.
Highly active and durable electrocatalysts for the oxygen evolution reaction (OER) are crucial for proton exchange membrane water electrolysis (PEMWE). While doped RuO catalysts demonstrate good activity and stability, the presence of dopants limits the number of exposed active sites and complicates Ru recovery. Here, we present a monometallic RuO (d-RuO) with lattice hydroxyl in the periodic structure as a high-performance OER electrocatalyst. The obtained d-RuO catalyst exhibits a low overpotential of 150 mV and long-term operational stability of 500 h at 10 mA cm, outperforming many Ru/Ir-based oxides ever reported. A PEMWE device using d-RuO sustains operation for 348 h at 200 mA cm. In-situ characterization reveals that the incorporation of lattice hydroxyl increases the Ru-Ru distance, which facilitates the turnover of the Ru oxidation state and promotes the formation of stable edge-sharing [RuO] octahedra during the OER, thereby accelerating the formation of O-O bonds and suppressing the overoxidation of Ru sites. Additionally, the small particle size of the catalyst decreases the three-phase contact line and promotes bubble release. This study will provide insights into the design and optimization of catalysts for various electrochemical reactions.
用于析氧反应(OER)的高活性和耐用的电催化剂对于质子交换膜水电解(PEMWE)至关重要。虽然掺杂的RuO催化剂表现出良好的活性和稳定性,但掺杂剂的存在限制了暴露的活性位点数量,并使Ru的回收复杂化。在此,我们展示了一种在周期性结构中具有晶格羟基的单金属RuO(d-RuO)作为高性能OER电催化剂。所获得的d-RuO催化剂在10 mA cm下表现出150 mV的低过电位和500 h的长期运行稳定性,优于许多已报道的基于Ru/Ir的氧化物。使用d-RuO的PEMWE装置在200 mA cm下可持续运行348 h。原位表征表明,晶格羟基的掺入增加了Ru-Ru距离,这有利于Ru氧化态的转变,并促进在OER过程中形成稳定的边共享[RuO]八面体,从而加速O-O键的形成并抑制Ru位点的过度氧化。此外,催化剂的小粒径减小了三相接触线并促进气泡释放。这项研究将为各种电化学反应的催化剂设计和优化提供见解。