Kim Daeuk, Chan Izabelle Nisha Maxine D, Manalastas Tosha Mae S, Concepcion Ii Ronnie S, Sta Agueda Joseph Rey H, Bitangcor Rafael Kyle B
Department of Manufacturing Engineering and Management, De La Salle University, Manila, 1004, Philippines.
Center of Engineering and Sustainable Development Research, De La Salle University, Manila, 1004, Philippines.
Sci Rep. 2025 Apr 12;15(1):12582. doi: 10.1038/s41598-025-96953-0.
The crosslinking characteristics of hydrogels and polymeric films critically influence their swelling capacity, a key factor in wound care applications. This study optimized the swelling behavior of polyvinyl alcohol (PVA)-polyethylene glycol (PEG)-bromothymol blue (BTB) films using three hybrid metaheuristic algorithms: Hybrid Genetic-Hippopotamus Optimizer (HG-HO), Hybrid Genetic-Walrus Optimization Algorithm (HG-WOA), and Hybrid Genetic-Horned Lizard Optimization Algorithm (HG-HLOA). Among these, HG-HLOA achieved the fastest convergence, while all algorithms reliably identified optimal solutions with comparable fitness values. The optimal glutaraldehyde concentration was determined as 4.9251 wt%, with a predicted maximum swelling ratio of 1217.7311%. Experimental validation yielded an average swelling ratio of 1225.7123%, differing by only 0.65% from the predicted value. An increasing trend in swelling ratio was observed with rising glutaraldehyde concentration up to the optimum point, followed by a decrease due to possible over-crosslinking and formation of acetal linkages. This trend was supported by structural analysis using Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM). Statistical analysis via Analysis of Variance (ANOVA) confirmed a significant relationship between glutaraldehyde concentration and swelling ratio, with a p-value of 2.1e.
水凝胶和聚合物薄膜的交联特性严重影响其溶胀能力,这是伤口护理应用中的一个关键因素。本研究使用三种混合元启发式算法优化了聚乙烯醇(PVA)-聚乙二醇(PEG)-溴百里酚蓝(BTB)薄膜的溶胀行为:混合遗传-河马优化器(HG-HO)、混合遗传-海象优化算法(HG-WOA)和混合遗传-角蜥优化算法(HG-HLOA)。其中,HG-HLOA收敛速度最快,而所有算法都能可靠地识别出具有可比适应度值的最优解。确定最佳戊二醛浓度为4.9251 wt%,预测最大溶胀率为1217.7311%。实验验证得到的平均溶胀率为1225.7123%,与预测值仅相差0.65%。在达到最佳点之前,随着戊二醛浓度的增加,溶胀率呈上升趋势,随后由于可能的过度交联和缩醛键的形成而下降。使用傅里叶变换红外(FTIR)光谱和扫描电子显微镜(SEM)进行的结构分析支持了这一趋势。通过方差分析(ANOVA)进行的统计分析证实了戊二醛浓度与溶胀率之间存在显著关系,p值为2.1e。