Amiri Mohammad Hussein, Mehrabi Hashjin Nastaran, Montazeri Mohsen, Mirjalili Seyedali, Khodadadi Nima
Faculty of Electrical Engineering, Shahid Beheshti University, Tehran, Iran.
Centre for Artificial Intelligence Research and Optimization, Torrens University Australia, Adelaide, Australia.
Sci Rep. 2024 Feb 29;14(1):5032. doi: 10.1038/s41598-024-54910-3.
The novelty of this article lies in introducing a novel stochastic technique named the Hippopotamus Optimization (HO) algorithm. The HO is conceived by drawing inspiration from the inherent behaviors observed in hippopotamuses, showcasing an innovative approach in metaheuristic methodology. The HO is conceptually defined using a trinary-phase model that incorporates their position updating in rivers or ponds, defensive strategies against predators, and evasion methods, which are mathematically formulated. It attained the top rank in 115 out of 161 benchmark functions in finding optimal value, encompassing unimodal and high-dimensional multimodal functions, fixed-dimensional multimodal functions, as well as the CEC 2019 test suite and CEC 2014 test suite dimensions of 10, 30, 50, and 100 and Zigzag Pattern benchmark functions, this suggests that the HO demonstrates a noteworthy proficiency in both exploitation and exploration. Moreover, it effectively balances exploration and exploitation, supporting the search process. In light of the results from addressing four distinct engineering design challenges, the HO has effectively achieved the most efficient resolution while concurrently upholding adherence to the designated constraints. The performance evaluation of the HO algorithm encompasses various aspects, including a comparison with WOA, GWO, SSA, PSO, SCA, FA, GOA, TLBO, MFO, and IWO recognized as the most extensively researched metaheuristics, AOA as recently developed algorithms, and CMA-ES as high-performance optimizers acknowledged for their success in the IEEE CEC competition. According to the statistical post hoc analysis, the HO algorithm is determined to be significantly superior to the investigated algorithms. The source codes of the HO algorithm are publicly available at https://www.mathworks.com/matlabcentral/fileexchange/160088-hippopotamus-optimization-algorithm-ho .
本文的新颖之处在于引入了一种名为河马优化(HO)算法的新型随机技术。HO算法的构思灵感来源于对河马固有行为的观察,展示了元启发式方法中的一种创新途径。HO算法在概念上是通过一个三阶段模型定义的,该模型纳入了它们在河流或池塘中的位置更新、对捕食者的防御策略以及规避方法,并进行了数学公式化。在161个基准函数中的115个函数中,HO算法在寻找最优值方面排名第一,这些函数包括单峰和高维多峰函数、固定维多峰函数,以及CEC 2019测试套件和CEC 2014测试套件中维度为10、30、50和100的函数以及锯齿形模式基准函数,这表明HO算法在利用和探索方面都表现出了显著的能力。此外,它有效地平衡了探索和利用,支持搜索过程。根据解决四个不同工程设计挑战的结果,HO算法有效地实现了最有效的解决方案,同时坚持遵守指定的约束条件。HO算法的性能评估包括多个方面,包括与被认为是研究最广泛的元启发式算法的WOA、GWO、SSA、PSO、SCA、FA、GOA、TLBO、MFO和IWO进行比较,与最近开发的算法AOA进行比较,以及与在IEEE CEC竞赛中因其成功而被认可的高性能优化器CMA-ES进行比较。根据统计事后分析,HO算法被确定明显优于所研究的算法。HO算法的源代码可在https://www.mathworks.com/matlabcentral/fileexchange/160088-hippopotamus-optimization-algorithm-ho上公开获取。