Suppr超能文献

基于分数阶误差方法的模糊控制器在单转子风力涡轮机系统中的功率管理

Management of power in single rotor wind turbine systems using fuzzy controller based on fractional order error approaches.

作者信息

Benbouhenni Habib, Yahdou Adil, Elbarbary Z M S, Djilali Abdelkadir Belhadj, Colak Ilhami, Al-Gahtani Saad F

机构信息

LAAS Laboratory, Department of Electrical Engineering, National Polytechnic School of Oran- Maurice Audin, BP 1523 Oran El M'naouer, Oran, Algeria.

Department of Electrical Engineering, Faculty of Technology, Laboratoire Génie Electrique Et Energies Renouvelables (LGEER), Hassiba Benbouali University of Chlef, Chlef, Algeria.

出版信息

Sci Rep. 2025 Apr 12;15(1):12696. doi: 10.1038/s41598-025-97886-4.

Abstract

Fuzzy Logic (FL) is a well-established artificial intelligence technique, particularly valuable in control applications where system modeling is either highly complex or impractical. However, its dependence on heuristic knowledge and rule-based decision-making can limit its precision and adaptability in dynamic environments. To address these challenges, this study introduces an enhanced FL-based control strategy that incorporates fractional-order error (FOE) to improve control performance in a single-rotor wind turbine system. The proposed FOE-based FL approach is applied to overcome the problems of the direct power control (DPC) of doubly-fed induction generators (DFIGs), leveraging fractional calculus to enhance system response, robustness, and efficiency. Extensive MATLAB-based simulations validate the effectiveness of the DPC-FOE-FL method with pulse width modulation compared to conventional DPC-FL control. The comparative analysis reveals that the proposed method significantly reduces energy fluctuations and harmonic distortion in the stator current, achieving a 40.85% reduction in the first test and a 34.21% reduction in the second test relative to traditional DPC-FL control. Additionally, the DPC-FOE-FL approach effectively suppresses reactive power overshoot, demonstrating reductions of 96.28%, 96.27%, and 54.56% across multiple test scenarios. Active power ripples are also minimized by 64.37%, 62.59%, and 62.96%, highlighting the method's superior dynamic performance. These findings confirm that integrating FOE into FL-based controllers significantly enhances power control stability and efficiency in wind energy systems. The DPC-FOE-FL technique offers a promising solution for optimizing renewable energy applications, particularly in fluctuating wind conditions, by ensuring greater precision, adaptability, and robustness in power regulation.

摘要

模糊逻辑(FL)是一种成熟的人工智能技术,在系统建模高度复杂或不切实际的控制应用中特别有价值。然而,它对启发式知识和基于规则的决策的依赖可能会限制其在动态环境中的精度和适应性。为了应对这些挑战,本研究引入了一种基于FL的增强控制策略,该策略结合了分数阶误差(FOE),以提高单旋翼风力发电机组系统的控制性能。所提出的基于FOE的FL方法被应用于克服双馈感应发电机(DFIG)的直接功率控制(DPC)问题,利用分数阶微积分来增强系统响应、鲁棒性和效率。与传统的DPC-FL控制相比,基于MATLAB的大量仿真验证了带有脉冲宽度调制的DPC-FOE-FL方法的有效性。对比分析表明,相对于传统的DPC-FL控制,所提出的方法显著降低了定子电流中的能量波动和谐波失真,在第一次测试中降低了40.85%,在第二次测试中降低了34.21%。此外,DPC-FOE-FL方法有效地抑制了无功功率过冲,在多个测试场景中分别降低了96.28%、96.27%和54.56%。有功功率纹波也分别最小化了64.37%、62.59%和62.96%,突出了该方法卓越的动态性能。这些发现证实,将FOE集成到基于FL的控制器中可显著提高风能系统中的功率控制稳定性和效率。DPC-FOE-FL技术为优化可再生能源应用提供了一个有前景的解决方案,特别是在波动的风力条件下,通过确保功率调节具有更高的精度、适应性和鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a211/11993738/aa847f92bb06/41598_2025_97886_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验