Suppr超能文献

BC-PMJRS:一种受脑计算启发的预定义多模态联合表示空间,用于增强跨模态学习。

BC-PMJRS: A Brain Computing-inspired Predefined Multimodal Joint Representation Spaces for enhanced cross-modal learning.

作者信息

Qin Jiahao, Liu Feng, Zong Lu

机构信息

School of Mathematics and Physics, Xi'an Jiaotong-Liverpool University, Ren'ai Road 111, Suzhou Industrial Park, Suzhou, 215123, China.

School of Psychology, Shanghai Jiao Tong University, 1954 Huashan Road, Xuhui District, Shanghai, 200030, China.

出版信息

Neural Netw. 2025 Aug;188:107449. doi: 10.1016/j.neunet.2025.107449. Epub 2025 Apr 10.

Abstract

Multimodal learning faces two key challenges: effectively fusing complex information from different modalities, and designing efficient mechanisms for cross-modal interactions. Inspired by neural plasticity and information processing principles in the human brain, this paper proposes BC-PMJRS, a Brain Computing-inspired Predefined Multimodal Joint Representation Spaces method to enhance cross-modal learning. The method learns the joint representation space through two complementary optimization objectives: (1) minimizing mutual information between representations of different modalities to reduce redundancy and (2) maximizing mutual information between joint representations and sentiment labels to improve task-specific discrimination. These objectives are balanced dynamically using an adaptive optimization strategy inspired by long-term potentiation (LTP) and long-term depression (LTD) mechanisms. Furthermore, we significantly reduce the computational complexity of modal interactions by leveraging a global-local cross-modal interaction mechanism, analogous to selective attention in the brain. Experimental results on the IEMOCAP, MOSI, and MOSEI datasets demonstrate that BC-PMJRS outperforms state-of-the-art models in both complete and incomplete modality settings, achieving up to a 1.9% improvement in weighted-F1 on IEMOCAP, a 2.8% gain in 7-class accuracy on MOSI, and a 2.9% increase in 7-class accuracy on MOSEI. These substantial improvements across multiple datasets demonstrate that incorporating brain-inspired mechanisms, particularly the dynamic balance of information redundancy and task relevance through neural plasticity principles, effectively enhances multimodal learning. This work bridges neuroscience principles with multimodal machine learning, offering new insights for developing more effective and biologically plausible models.

摘要

多模态学习面临两个关键挑战

有效地融合来自不同模态的复杂信息,以及设计高效的跨模态交互机制。受人类大脑中的神经可塑性和信息处理原理启发,本文提出了BC-PMJRS,一种受大脑计算启发的预定义多模态联合表示空间方法,以增强跨模态学习。该方法通过两个互补的优化目标来学习联合表示空间:(1)最小化不同模态表示之间的互信息以减少冗余,(2)最大化联合表示与情感标签之间的互信息以提高特定任务的辨别力。使用受长时程增强(LTP)和长时程抑制(LTD)机制启发的自适应优化策略动态平衡这些目标。此外,我们通过利用类似于大脑中选择性注意的全局-局部跨模态交互机制,显著降低了模态交互的计算复杂度。在IEMOCAP、MOSI和MOSEI数据集上的实验结果表明,BC-PMJRS在完整和不完整模态设置下均优于现有模型,在IEMOCAP上加权F1提高了1.9%,在MOSI上7类准确率提高了2.8%,在MOSEI上7类准确率提高了2.9%。多个数据集上的这些显著改进表明,纳入受大脑启发的机制,特别是通过神经可塑性原理实现信息冗余和任务相关性的动态平衡,有效地增强了多模态学习。这项工作将神经科学原理与多模态机器学习联系起来,为开发更有效且符合生物学原理的模型提供了新的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验