Suppr超能文献

肺癌的异质性:人工智能时代的组织病理学多样性与肿瘤分类

Heterogeneity of Lung Cancer: The Histopathological Diversity and Tumour Classification in the Artificial Intelligence Era.

作者信息

Ramos Raquel, Moura Conceição Souto, Costa Mariana, Lamas Nuno Jorge, Castro Lígia Prado E, Correia Renato, Garcez Diogo, Pereira José Miguel, Sousa Carlos, Vale Nuno

机构信息

PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Porto, Portugal.

CINTESIS@RISE, Faculty of Medicine, University of Porto, Porto, Portugal.

出版信息

Pathobiology. 2025;92(4):239-250. doi: 10.1159/000544892. Epub 2025 Apr 14.

Abstract

BACKGROUND

Lung cancer is the most common cancer worldwide and is also the leading cause of cancer-related mortality. Its poor prognosis is primarily attributed to unspecific symptoms that result in late diagnosis, and its heterogeneous nature that further complicates treatment. This heterogeneity is largely driven by the diversity in histological subtypes, significantly impacting the clinical course of patients. Therefore, tumour subtyping using haematoxylin and eosin staining and immunohistochemistry is crucial for predicting patients' outcomes, making an accurate diagnosis, and choosing the appropriate treatment approach. Small-cell lung cancer and non-small cell lung cancer are the two major types, and subclassifying non-small cell lung cancer is essential to identify genetic alterations and, consequently, choose an adequate targeted therapy.

SUMMARY

This article reviews all these lung tumour characteristics, specifying histological types and subtypes, and presenting their distinct features. To aid understanding, complementary images from Unilabs illustrate various lung tumour subtypes. Additionally, alternative approaches using artificial intelligence to improve tumour classification are reviewed, along with a discussion of their limitations.

KEY MESSAGES

Thus, lung tumour classification is crucial for cancer treatment; nonetheless, it can be a subjective process, reliant on the pathologist's interpretation. In the era of artificial intelligence and deep/machine learning, the classification of lung cancer subtypes has the potential to become more efficient, accurate, and consistent. These advancements could lead to faster diagnosis and treatment decisions, ultimately improving patient survival and quality of care. Harnessing AI tools may address the limitations of subjective interpretation, offering a promising avenue for enhancing precision in lung cancer diagnostics.

摘要

背景

肺癌是全球最常见的癌症,也是癌症相关死亡的主要原因。其预后较差主要归因于导致诊断延迟的非特异性症状,以及使治疗进一步复杂化的异质性。这种异质性很大程度上由组织学亚型的多样性驱动,对患者的临床病程有显著影响。因此,使用苏木精和伊红染色及免疫组织化学进行肿瘤亚型分类对于预测患者预后、做出准确诊断以及选择合适的治疗方法至关重要。小细胞肺癌和非小细胞肺癌是两种主要类型,对非小细胞肺癌进行亚分类对于识别基因改变并因此选择适当的靶向治疗至关重要。

总结

本文回顾了所有这些肺肿瘤特征,明确了组织学类型和亚型,并介绍了它们的独特特征。为了便于理解,来自Unilabs的补充图像展示了各种肺肿瘤亚型。此外,还回顾了使用人工智能改善肿瘤分类的替代方法,并讨论了其局限性。

关键信息

因此,肺肿瘤分类对于癌症治疗至关重要;然而,它可能是一个主观过程,依赖于病理学家的解读。在人工智能和深度/机器学习时代,肺癌亚型分类有可能变得更高效、准确和一致。这些进展可能会带来更快的诊断和治疗决策,最终提高患者生存率和护理质量。利用人工智能工具可能会解决主观解读的局限性,为提高肺癌诊断的精准度提供一条有前景的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验