Wang Lina, Du Ruofei, Zhao Zicheng, Na Muhan, Li Xinyi, Zhao Xiao, Wang Xiyang, Wu Yimin A, Jana Subhajit, Zou Yongcun, Chen Hui, Zou Xiaoxin
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China.
Angew Chem Int Ed Engl. 2025 Jul 21;64(30):e202501744. doi: 10.1002/anie.202501744. Epub 2025 Apr 24.
The anode catalyst layer is composed of catalytically functional IrO and protonic conducting ionomer and largely dictates catalytic performance of proton exchange membrane water electrolyzer (PEMWE). Here, we report a new type of anode nanocatalyst that possesses both IrO's catalytic function and high proton conductivity that traditional anode catalysts lack and demonstrate its ability to construct high-performance, low-ionomer-dependent anode catalyst layer, the interior of which-about 85% of total catalyst layer-is free of ionomers. The proton-conducting anode nanocatalyst is prepared via protonation of layered iridate K(NaIr)O and then exfoliation to produce cation vacancy-rich, 1 nm-thick iridium oxide nanosheets (labeled as □-HIrO). Besides being a proton conductor, the □-HIrO is found to have abundant catalytic active sites for the oxygen evolution reaction due to the optimization of both edge and in-plane iridium sites by multiple cation vacancies. The dual functionality of □-HIrO allows the fabrication of low-iridium-loading, low-ionomer-dependent anode catalyst layer with enhanced exposure of catalytic sites and reduced electronic contact resistance, in contrast to common fully mixed catalyst/ionomer layers in PEMWE. This work represents an example of realizing the structural innovation in anode catalyst layer through the bifunctionality of anode catalyst.
阳极催化剂层由具有催化功能的IrO和质子传导离聚物组成,在很大程度上决定了质子交换膜水电解槽(PEMWE)的催化性能。在此,我们报道了一种新型阳极纳米催化剂,它兼具IrO的催化功能和传统阳极催化剂所缺乏的高质子传导性,并展示了其构建高性能、低离聚物依赖型阳极催化剂层的能力,该催化剂层内部(约占总催化剂层的85%)不含离聚物。通过对层状铱酸盐K(NaIr)O进行质子化,然后剥离制备出富含阳离子空位的1纳米厚氧化铱纳米片(标记为□-HIrO),以此作为质子传导阳极纳米催化剂。除了作为质子导体外,由于多个阳离子空位对边缘和平面内铱位点的优化,发现□-HIrO具有丰富的析氧反应催化活性位点。与PEMWE中常见的完全混合的催化剂/离聚物层相比,□-HIrO的双重功能使得能够制备低铱负载、低离聚物依赖型阳极催化剂层,同时增强了催化位点的暴露并降低了电子接触电阻。这项工作代表了通过阳极催化剂的双功能实现阳极催化剂层结构创新的一个实例。