Lu Wen, Lee Brad S, Deng Helen Xue Ying, Lakonishok Margot, Martin-Blanco Enrique, Gelfand Vladimir I
Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
Instituto de Biología Molecular de Barcelona, CSIC, Parc Cientific de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
Development. 2025 May 1;152(9). doi: 10.1242/dev.204424. Epub 2025 May 8.
During neuronal development, microtubule reorganization shapes axons and dendrites, establishing the framework for efficient nervous system wiring. Our previous work has demonstrated the role of kinesin-1 in driving microtubule sliding, which powers early axon outgrowth and regeneration in Drosophila melanogaster. Here, we reveal a crucial new role for kinesin-5, a mitotic motor, in modulating postmitotic neuron development. The Drosophila kinesin-5, Klp61F, is expressed in larval brain neurons, with high levels in ventral nerve cord (VNC) neurons. Knockdown of Klp61F in neurons leads to severe adult locomotion defects and lethality, primarily due to defects in VNC motor neurons. Klp61F depletion results in excessive microtubule penetration into the axon growth cone, causing significant axon growth defects in culture and in vivo. These defects are rescued by a chimeric human-Drosophila kinesin-5 motor, indicating a conserved role for kinesin-5 in neuronal development. Altogether, we propose that kinesin-5 acts as a brake on kinesin-1-driven microtubule sliding, ensuring proper axon pathfinding in growing neurons.
在神经元发育过程中,微管重组塑造轴突和树突,为高效的神经系统布线建立框架。我们之前的工作已经证明驱动蛋白-1在驱动微管滑动中的作用,这为果蝇早期轴突生长和再生提供动力。在此,我们揭示了有丝分裂驱动蛋白驱动蛋白-5在调节有丝分裂后神经元发育中的一个关键新作用。果蝇驱动蛋白-5,Klp61F,在幼虫脑神经元中表达,在腹神经索(VNC)神经元中水平较高。在神经元中敲低Klp61F会导致严重的成虫运动缺陷和致死性,主要是由于VNC运动神经元的缺陷。Klp61F缺失导致微管过度侵入轴突生长锥,在培养物中和体内引起显著的轴突生长缺陷。这些缺陷可通过嵌合的人-果蝇驱动蛋白-5马达挽救,表明驱动蛋白-5在神经元发育中具有保守作用。总之,我们提出驱动蛋白-5作为驱动蛋白-1驱动的微管滑动的制动器,确保生长中的神经元中轴突正确导向。