Suppr超能文献

Trim9 和 Klp61F 促进新的树突状微管沿着平行微管进行聚合。

Trim9 and Klp61F promote polymerization of new dendritic microtubules along parallel microtubules.

机构信息

Biochemistry and Molecular Biology Department and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.

Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.

出版信息

J Cell Sci. 2021 Jun 1;134(11). doi: 10.1242/jcs.258437. Epub 2021 Jun 7.

Abstract

Axons and dendrites are distinguished by microtubule polarity. In Drosophila, dendrites are dominated by minus-end-out microtubules, whereas axons contain plus-end-out microtubules. Local nucleation in dendrites generates microtubules in both orientations. To understand why dendritic nucleation does not disrupt polarity, we used live imaging to analyze the fate of microtubules generated at branch points. We found that they had different rates of success exiting the branch based on orientation: correctly oriented minus-end-out microtubules succeeded in leaving about twice as often as incorrectly oriented microtubules. Increased success relied on other microtubules in a parallel orientation. From a candidate screen, we identified Trim9 and kinesin-5 (Klp61F) as machinery that promoted growth of new microtubules. In S2 cells, Eb1 recruited Trim9 to microtubules. Klp61F promoted microtubule growth in vitro and in vivo, and could recruit Trim9 in S2 cells. In summary, the data argue that Trim9 and kinesin-5 act together at microtubule plus ends to help polymerizing microtubules parallel to pre-existing ones resist catastrophe.

摘要

轴突和树突通过微管极性区分。在果蝇中,树突主要由负端向外的微管主导,而轴突则含有正端向外的微管。树突中的局部成核产生两种取向的微管。为了理解为什么树突成核不会破坏极性,我们使用活细胞成像分析分支点处生成的微管的命运。我们发现,它们根据取向以不同的成功率离开分支:正确取向的负端向外微管成功离开的频率约为错误取向的微管的两倍。成功率的增加依赖于平行取向的其他微管。通过候选筛选,我们确定 Trim9 和驱动蛋白-5(Klp61F)是促进新微管生长的机制。在 S2 细胞中,Eb1 将 Trim9 募集到微管上。Klp61F 促进体外和体内微管生长,并能在 S2 细胞中募集 Trim9。总之,数据表明 Trim9 和驱动蛋白-5 一起作用于微管正端,帮助与预先存在的微管平行的聚合微管抵抗解聚。

相似文献

引用本文的文献

7
Cellular cartography: Towards an atlas of the neuronal microtubule cytoskeleton.细胞图谱:迈向神经元微管细胞骨架图谱
Front Cell Dev Biol. 2023 Mar 22;11:1052245. doi: 10.3389/fcell.2023.1052245. eCollection 2023.
9
Mechanisms of microtubule organization in differentiated animal cells.分化动物细胞中微管组织的机制。
Nat Rev Mol Cell Biol. 2022 Aug;23(8):541-558. doi: 10.1038/s41580-022-00473-y. Epub 2022 Apr 5.

本文引用的文献

3
Endosomal Wnt signaling proteins control microtubule nucleation in dendrites.内体 Wnt 信号蛋白控制树突中的微管起始。
PLoS Biol. 2020 Mar 12;18(3):e3000647. doi: 10.1371/journal.pbio.3000647. eCollection 2020 Mar.
5
Feedback-Driven Assembly of the Axon Initial Segment.轴突起始段的反馈驱动组装。
Neuron. 2019 Oct 23;104(2):305-321.e8. doi: 10.1016/j.neuron.2019.07.029. Epub 2019 Aug 29.
7
Microtubule minus-end regulation at a glance.微管负端调控速览。
J Cell Sci. 2019 Jun 7;132(11):jcs227850. doi: 10.1242/jcs.227850.
9
TRIM46 Organizes Microtubule Fasciculation in the Axon Initial Segment.TRIM46 组织轴突起始段中的微管束。
J Neurosci. 2019 Jun 19;39(25):4864-4873. doi: 10.1523/JNEUROSCI.3105-18.2019. Epub 2019 Apr 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验