Morioka Kazuhito, Tazoe Toshiki, Huie J Russell, Hayakawa Kentaro, Okazaki Rentaro, Guandique Cristian F, Almeida Carlos A, Haefeli Jenny, Hamanoue Makoto, Endoh Takashi, Tanaka Sakae, Bresnahan Jacqueline C, Beattie Michael S, Ogata Toru, Ferguson Adam R
Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA.
Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, Japan.
iScience. 2025 Mar 8;28(4):112180. doi: 10.1016/j.isci.2025.112180. eCollection 2025 Apr 18.
Use-dependent plasticity after spinal cord injury (SCI) enhances neuromotor function, however, the optimal timing to initiate rehabilitation remains controversial. To test impacts of early disuse, we established a rodent model of transient hindlimb suspension in acute phase SCI. Early disuse in the first 2-week after SCI undermined recovery on open-field locomotion, kinematics, and swim tests even after 6-week of normal gravity reloading. Early disuse produced chronic spinal circuit hyper-excitability in H-reflex and interlimb reflex tests. Quantitative synaptoneurosome analysis of lumboventral spinal cords revealed shifts in AMPA receptor (AMPAR) subunit GluA1 localization and serine 881 phosphorylation, reflecting enduring synaptic memories of early disuse stored in the spinal cord. Automated confocal analysis of motoneurons revealed persistent shifts toward GluA2-lacking, calcium-permeable AMPARs in disuse subjects. Unsupervised machine learning associated multidimensional synaptic changes with persistent recovery deficits in SCI. The results argue for early aggressive rehabilitation to prevent disuse plasticity that limits SCI recovery.
脊髓损伤(SCI)后的使用依赖性可塑性可增强神经运动功能,然而,开始康复的最佳时机仍存在争议。为了测试早期废用的影响,我们建立了急性脊髓损伤后短暂后肢悬吊的啮齿动物模型。脊髓损伤后前两周的早期废用即使在恢复正常重力6周后仍会损害旷场运动、运动学和游泳测试的恢复。早期废用在H反射和肢体间反射测试中产生慢性脊髓回路过度兴奋性。对腰腹脊髓的定量突触神经小体分析显示,AMPA受体(AMPAR)亚基GluA1的定位和丝氨酸881磷酸化发生变化,反映了脊髓中储存的早期废用的持久突触记忆。对运动神经元的自动共聚焦分析显示,在废用的实验对象中,向缺乏GluA2、钙通透性AMPARs持续转变。无监督机器学习将多维突触变化与脊髓损伤中持续的恢复缺陷相关联。结果表明应尽早积极进行康复治疗,以防止限制脊髓损伤恢复的废用可塑性。