Jang Woo Young, Kim Yu Jeong, Chang Jeong Ho
Korea Institute of Ceramic Engineering and Technology, Jinju 52851, Republic of Korea.
Department of Materials Science & Engineering, Yonsei University, Seoul 03722, Republic of Korea.
ACS Omega. 2025 Mar 26;10(13):13319-13326. doi: 10.1021/acsomega.4c11216. eCollection 2025 Apr 8.
This study evaluates the enzymatic lipolysis performance of nanofructosome-coated CalB lipase (CalB@NF) encapsulated in silica and immobilized on silica-coated magnetic nanoparticles (Si-MNP) for converting natural olive oil to oleic acid. The nanofructosome coating, composed of levan, a nanosized fructan polymer, was applied to enhance the heat and acid resistance of the CalB enzyme. To further improve functionality, CalB@NF was encapsulated in silica (CalB@NF@SiO) or immobilized on Si-MNP using a chloropropylsilane linker. The silica-encapsulated CalB@NF (CalB@NF@SiO) was synthesized via a sol-gel process, resulting in an average particle size of 304 nm, while the immobilized CalB@NF on Si-MNP exhibited a smaller average particle size of 58 nm. Quantitative determination of CalB in both formulations was conducted using the Bradford assay, yielding concentrations of 19.5 μg/mL for CalB@NF@SiO and 44.9 μg/mL for CalB@NF@Si-MNP. Enzymatic lipolysis was evaluated by measuring the production of oleic acid from natural olive oil. CalB@NF@Si-MNP achieved complete lipolysis within 3 h, whereas CalB@NF@SiO required 24 h to reach the same result. The lipolysis rates were 0.92 mmol/h for CalB@NF@Si-MNP and 0.21 mmol/h for CalB@NF@SiO, indicating that CalB@NF@Si-MNP was 4.5 times faster. Regarding reusability, CalB@NF@SiO retained 20% more activity compared to CalB@NF@Si-MNP. While the reusability of CalB@NF@Si-MNP decreased to 76% after the first cycle, CalB@NF@SiO maintained nearly 100% reusability across multiple cycles. These results highlight the complementary strengths of the two formulations: CalB@NF@SiO offers controlled lipolysis rates, high stability, and excellent reusability, whereas CalB@NF@Si-MNP excels in rapid lipolysis. Both silica encapsulation and silica-coated magnetic nanoparticles demonstrate substantial potential for optimizing enzyme activity, stability, and reusability in diverse applications.
本研究评估了包裹在二氧化硅中并固定在二氧化硅包覆磁性纳米颗粒(Si-MNP)上的纳米果糖体包覆的CalB脂肪酶(CalB@NF)将天然橄榄油转化为油酸的酶促脂解性能。由纳米级果聚糖聚合物左聚糖组成的纳米果糖体涂层被用于提高CalB酶的耐热性和耐酸性。为了进一步改善功能,CalB@NF被封装在二氧化硅中(CalB@NF@SiO)或使用氯丙基硅烷连接剂固定在Si-MNP上。通过溶胶-凝胶法合成了二氧化硅封装的CalB@NF(CalB@NF@SiO),其平均粒径为304 nm,而固定在Si-MNP上的CalB@NF平均粒径较小,为58 nm。使用Bradford法对两种制剂中的CalB进行定量测定,CalB@NF@SiO的浓度为19.5 μg/mL,CalB@NF@Si-MNP的浓度为44.9 μg/mL。通过测量天然橄榄油中油酸的产生来评估酶促脂解。CalB@NF@Si-MNP在3小时内实现了完全脂解,而CalB@NF@SiO需要24小时才能达到相同的结果。CalB@NF@Si-MNP的脂解速率为0.92 mmol/h,CalB@NF@SiO的脂解速率为0.21 mmol/h,表明CalB@NF@Si-MNP快4.5倍。关于可重复使用性,CalB@NF@SiO比CalB@NF@Si-MNP保留了多20%的活性。虽然CalB@NF@Si-MNP在第一个循环后可重复使用性降至76%,但CalB@NF@SiO在多个循环中保持了近100%的可重复使用性。这些结果突出了两种制剂的互补优势:CalB@NF@SiO提供可控的脂解速率、高稳定性和出色的可重复使用性,而CalB@NF@Si-MNP在快速脂解方面表现出色。二氧化硅封装和二氧化硅包覆磁性纳米颗粒在优化酶活性、稳定性和在各种应用中的可重复使用性方面都显示出巨大潜力。