Huang Jiahui, Miranda Alessio, Liu Wei, Cheng Xiang, Dwir Benjamin, Rudra Alok, Chang Kai-Chi, Kapon Eli, Wong Chee Wei
Mesoscopic Optics and Quantum Electronics Laboratory, Department of Electrical and Computer Engineering, University of California, 420 Westwood Plaza, Los Angeles, CA 90095 USA.
Present Address: Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), 710119 Xi'an, China.
Commun Phys. 2025;8(1):152. doi: 10.1038/s42005-025-02051-y. Epub 2025 Apr 11.
A compact platform to integrate emitters in a cavity-like support is to embed quantum dots (QDs) in a photonic crystal (PhC) structure, making them promising candidates for integrated quantum photonic circuits. The emission properties of QDs can be modified by tailored photonic structures, relying on the Purcell effect or strong light-matter interactions. However, the effects of photonic states on spatial features of exciton emissions in these systems are rarely explored. Such effect is difficult to access due to random positions of self-assembled QDs in PhC structures, and the fact that quantum well excitons' wavefunctions resemble photonic states in a conventional distributed Bragg reflector cavity system. In this work, we instead observe a spatial signature of exciton emission using site-controlled QDs embedded in PhC cavities. In particular, we observe the detuning-dependent spatial repulsion of the QD exciton emissions by polarized imaging of the micro-photoluminescence, dependent on the controlled QD's position in a spatially extended photonic pattern. The observed effect arises due to the quantum interference between QD decay channel in a spatially-extended cavity mode. Our findings suggest that integration of site-controlled QDs in tailored photonic structures can enable spatially distributed single-photon sources and photon switches.
一种将发射器集成在类似腔的支撑结构中的紧凑平台是将量子点(QD)嵌入光子晶体(PhC)结构中,这使其成为集成量子光子电路的有前途的候选者。量子点的发射特性可以通过定制的光子结构来修改,这依赖于珀塞尔效应或强光与物质的相互作用。然而,光子态对这些系统中激子发射空间特征的影响很少被探索。由于自组装量子点在光子晶体结构中的随机位置,以及量子阱激子的波函数类似于传统分布式布拉格反射器腔系统中的光子态,这种效应很难获得。在这项工作中,我们转而使用嵌入光子晶体腔中的位点控制量子点来观察激子发射的空间特征。特别是,我们通过微光致发光的偏振成像观察到量子点激子发射的与失谐相关的空间排斥,这取决于受控量子点在空间扩展光子模式中的位置。观察到的效应是由于空间扩展腔模式中量子点衰变通道之间的量子干涉引起的。我们的研究结果表明,在位点控制的量子点与定制的光子结构的集成可以实现空间分布的单光子源和光子开关。