Schatzl Magdalena, Hackl Florian, Glaser Martin, Rauter Patrick, Brehm Moritz, Spindlberger Lukas, Simbula Angelica, Galli Matteo, Fromherz Thomas, Schäffler Friedrich
Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz , Altenbergerstraße 69, 4040 Linz, Austria.
Dipartimento di Fisica, Università degli Studi di Pavia , Via A. Bassi 6, 27100 Pavia, Italy.
ACS Photonics. 2017 Mar 15;4(3):665-673. doi: 10.1021/acsphotonics.6b01045. Epub 2017 Feb 13.
Efficient coupling to integrated high-quality-factor cavities is crucial for the employment of germanium quantum dot (QD) emitters in future monolithic silicon-based optoelectronic platforms. We report on strongly enhanced emission from single Ge QDs into L3 photonic crystal resonator (PCR) modes based on precise positioning of these dots at the maximum of the respective mode field energy density. Perfect site control of Ge QDs grown on prepatterned silicon-on-insulator substrates was exploited to fabricate in one processing run almost 300 PCRs containing single QDs in systematically varying positions within the cavities. Extensive photoluminescence studies on this cavity chip enable a direct evaluation of the position-dependent coupling efficiency between single dots and selected cavity modes. The experimental results demonstrate the great potential of the approach allowing CMOS-compatible parallel fabrication of arrays of spatially matched dot/cavity systems for group-IV-based data transfer or quantum optical systems in the telecom regime.
高效耦合到集成的高品质因子腔对于在未来单片硅基光电平台中使用锗量子点(QD)发射器至关重要。我们报告了基于将这些量子点精确放置在各自模式场能量密度的最大值处,单Ge量子点向L3光子晶体谐振器(PCR)模式的强烈增强发射。利用在预图案化的绝缘体上硅衬底上生长的Ge量子点的完美位点控制,在一次处理过程中制造了近300个PCR,其中单个量子点系统地位于腔内不同位置。对该腔芯片进行的广泛光致发光研究能够直接评估单个量子点与选定腔模式之间的位置相关耦合效率。实验结果证明了该方法的巨大潜力,该方法允许通过CMOS兼容的并行制造空间匹配的点/腔系统阵列,用于基于IV族的数据传输或电信领域的量子光学系统。