Suppr超能文献

肠道微生物群与恶性淋巴瘤之间的因果关系:一项双向双样本孟德尔随机化研究

Causal relationship between gut microbiota and malignant lymphoma: a two-way two-sample mendelian randomization study.

作者信息

Laoguo Shixue, Tang Jing, Xu Xiaoyu, Huang Xianye, Jiang Yanfeng, Mo Ning, Duan Shanlin, Wu Weizhen, Li Hening, Taylor Justin, Ma Jie

机构信息

Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.

Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.

出版信息

Transl Cancer Res. 2025 Mar 30;14(3):1982-1994. doi: 10.21037/tcr-2025-303. Epub 2025 Mar 27.

Abstract

BACKGROUND

Emerging observational and clinical studies have highlighted the role of gut microbiota in hematologic malignancies, including malignant lymphoma. However, conflicting findings persist regarding the causal direction of this relationship, as traditional studies are susceptible to confounding factors and reverse causality. Mendelian randomization (MR) analysis, leveraging genetic variants as instrumental variables (IVs), offers a robust approach to infer causality by minimizing these biases. Here, we investigate the bidirectional causal links between gut microbiota and malignant lymphoma, addressing controversies in existing population-based studies.

METHODS

Bidirectional two-sample MR analysis was used to examine the causal relationship between malignant lymphoma and gut microbiota. The summary-level data of gut microbiota was obtained from the MiBioGen Consortium, a large-scale genome-wide study, involving 18,340 participants from a multiethnic cohort. Summary statistics for malignant lymphoma were sourced from the OpenGWAS website, which contains data from 490,803 participants. Using the standard quality-controlled single-nucleotide polymorphism (SNP) as an IV, we examined the potential causative link between gut microbiota and malignant lymphoma via the inverse variance weighting, MR Egger, weighted median, weighted model, and simple mode. Reverse MR analysis was further conducted on bacterial taxa identified as causally associated with malignant lymphoma in the forward MR analysis.

RESULTS

Seven causal relationships between gut microbiota and malignant lymphoma were found, including the phylum [odds ratio (OR) =1.31; 95% confidence interval (CI): 1.02-1.68; P=0.03], the class (OR =1.22; 95% CI: 1.00-1.49; P=0.048), the family (OR =1.27; 95% CI: 1.04-1.55; P=0.02), the genus group (OR =1.13; 95% CI: 1.00-1.27; P=0.046), the genus (OR =1.23; 95% CI: 1.06-1.43; P=0.006), the genus (OR =1.41; 95% CI: 1.00-1.99; P=0.049), and the genus (OR =1.18; 95% CI: 1.03-1.35; P=0.02). No significant level pleiotropy or heterogeneity was detected in the IV, and there was no reverse causality between gut microbiota and malignant lymphoma.

CONCLUSIONS

We investigated the potential causal relationship between gut microbiota and malignant lymphoma. Our findings provide a theoretical foundation for future research on the relationship between gut microbiota and lymphoma, and may facilitate the development of diagnostic, therapeutic, and preventive strategies for lymphoma in clinical practice.

摘要

背景

新兴的观察性和临床研究强调了肠道微生物群在血液系统恶性肿瘤(包括恶性淋巴瘤)中的作用。然而,由于传统研究易受混杂因素和反向因果关系的影响,关于这种关系的因果方向仍存在相互矛盾的发现。孟德尔随机化(MR)分析利用基因变异作为工具变量(IVs),通过最小化这些偏差提供了一种强有力的方法来推断因果关系。在此,我们研究肠道微生物群与恶性淋巴瘤之间的双向因果联系,以解决现有基于人群的研究中的争议。

方法

采用双向两样本MR分析来检验恶性淋巴瘤与肠道微生物群之间的因果关系。肠道微生物群的汇总数据来自MiBioGen联盟,这是一项大规模全基因组研究,涉及来自多民族队列的18340名参与者。恶性淋巴瘤的汇总统计数据来自OpenGWAS网站,该网站包含490803名参与者的数据。使用标准质量控制的单核苷酸多态性(SNP)作为IV,我们通过逆方差加权、MR Egger、加权中位数、加权模型和简单模式检验肠道微生物群与恶性淋巴瘤之间的潜在因果联系。对在前向MR分析中被确定为与恶性淋巴瘤有因果关联的细菌分类群进一步进行反向MR分析。

结果

发现肠道微生物群与恶性淋巴瘤之间存在七种因果关系,包括门 [优势比(OR)=1.31;95%置信区间(CI):1.02 - 1.68;P = 0.03]、纲 (OR = 1.22;95% CI:1.00 - 1.49;P = 0.048)、科 (OR = 1.27;95% CI:1.04 - 1.55;P = 0.02)、属 组(OR = 1.13;95% CI:1.00 - 1.27;P = 0.046)、属 (OR = 1.23;95% CI:1.06 - 1.43;P = 0.006)、属 (OR = 1.41;95% CI:1.00 - 1.99;P = 0.049)和属 (OR = 1.18;95% CI:1.03 -

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f45/11985171/1734da37391e/tcr-14-03-1982-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验