Wei Taotao, Zhang Huiguang, Wang Shunfen, Wu Chunping, Tu Tieyao, Wang Yonglong, Qian Xin
College of Forestry, Fujian Agriculture and Forestry University, Fujian, China.
College of Life Sciences, Fujian Agriculture and Forestry University, Fujian, China.
IMA Fungus. 2025 Apr 3;16:e140187. doi: 10.3897/imafungus.16.e140187. eCollection 2025.
Arbuscular mycorrhizal fungi (AMF) and ectomycorrhizal fungi (EMF) form ubiquitous symbiotic relationships with plants through co-evolutionary processes, providing multiple benefits for plant growth, productivity, health, and stress mitigation. Mountain ecosystem multifunctionality is significantly influenced by mycorrhizal responses to climate change, highlighting the importance of understanding the complex interactions between these fungi and environmental variables. In this study, we investigated five vegetation zones across an altitudinal gradient (675-2157 m a.s.l.) in Wuyi Mountain, one of the most well-preserved mid-subtropical mountain ecosystems in eastern China. Using high-throughput sequencing, we examined the altitudinal distribution patterns, community assembly mechanisms, and network interactions of soil AMF and EMF. Our analyses demonstrated significant altitudinal variations in the composition and diversity of mycorrhizal fungal communities. AMF richness peaked in the subalpine dwarf forest at intermediate elevations, whereas EMF richness was highest in the low-altitude evergreen broad-leaved forest, showing a marked decrease in the alpine meadow ecosystem. β-diversity decomposition revealed that species turnover constituted the primary mechanism of community differentiation for both fungal types, explaining >56% of the observed variation. Stochastic processes dominated community assembly, with the relative importance of dispersal limitation and drift showing distinct altitudinal patterns. Network analysis indicated that AMF networks reached maximum complexity in evergreen broad-leaved forests, while EMF networks showed similar complexity levels in coniferous forests. Among the examined factors, soil properties emerged as the predominant driver of altitudinal variations in ecosystem multifunctionality, followed by AMF communities and climatic variables. These findings provide critical insights into the ecological functions and environmental adaptations of mycorrhizal fungi, advancing our understanding of their responses to environmental changes in mountain ecosystems and informing evidence-based conservation strategies.
丛枝菌根真菌(AMF)和外生菌根真菌(EMF)通过共同进化过程与植物形成普遍存在的共生关系,为植物生长、生产力、健康和减轻胁迫提供多种益处。山地生态系统多功能性受到菌根对气候变化响应的显著影响,凸显了理解这些真菌与环境变量之间复杂相互作用的重要性。在本研究中,我们调查了中国东部保存最完好的中亚热带山地生态系统之一——武夷山海拔梯度(675 - 2157米)上的五个植被带。利用高通量测序技术,我们研究了土壤AMF和EMF的海拔分布模式、群落组装机制及网络相互作用。我们的分析表明,菌根真菌群落的组成和多样性存在显著的海拔差异。AMF丰富度在海拔中等的亚高山矮林达到峰值,而EMF丰富度在低海拔常绿阔叶林最高,在高山草甸生态系统中显著降低。β多样性分解表明,物种周转是两种真菌类型群落分化的主要机制,解释了>56%的观察到的变异。随机过程主导群落组装,扩散限制和漂变的相对重要性呈现出明显的海拔模式。网络分析表明,AMF网络在常绿阔叶林中达到最大复杂性,而EMF网络在针叶林中表现出相似的复杂程度。在所研究的因素中,土壤性质是生态系统多功能性海拔变化的主要驱动因素,其次是AMF群落和气候变量。这些发现为菌根真菌的生态功能和环境适应性提供了关键见解,增进了我们对它们在山地生态系统中对环境变化响应的理解,并为基于证据的保护策略提供了依据。