Li Nan, Peng Erxuan, Liu Fenghua
Department of Gynecology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital Zhengzhou 450008, Henan, China.
Am J Cancer Res. 2025 Mar 15;15(3):1158-1173. doi: 10.62347/UMKG8609. eCollection 2025.
This study focuses on the development and evaluation of machine learning models, particularly the Adaptive Boosting (AdaBoost) algorithm, for predicting lymph node metastasis (LNM) in cervical cancer (CC) patients. The findings show that AdaBoost outperformed traditional statistical methods and other machine learning models, including Random Forest, Support Vector Machine (SVM), and Least Absolute Shrinkage and Selection Operator (LASSO) regression, in predicting LNM. The areas under the curve (AUCs) for the training and validation sets were 0.882 and 0.857, respectively, indicating high prediction efficiency. Multivariate logistic regression identified key independent risk factors for LNM, including FIGO staging, squamous cell carcinoma antigen (SCC-Ag), white blood cell count (WBC), neutrophil count (NEUT), hemoglobin (HGB) level, and prealbumin (PAB) level. These factors are significant in predicting LNM and emphasize their importance in clinical decision-making. AdaBoost's ability to predict LNM preoperatively, without invasive procedures such as lymph node dissection, can reduce treatment risks and improve patient outcomes. While other models, such as XGBoost, showed a marginally higher AUC in training, AdaBoost's performance in validation was comparable (P=0.18). Inflammatory and nutritional markers, such as WBC, NEUT, HGB, and PAB, were significant predictors and provide valuable insights into tumor progression. Despite the study's retrospective nature, the integration of larger, multi-center datasets, and multi-modal imaging could further enhance the model's accuracy and generalizability. This high-performance AdaBoost model offers clinical potential for refining personalized treatment strategies for CC patients.
本研究聚焦于开发和评估用于预测宫颈癌(CC)患者淋巴结转移(LNM)的机器学习模型,特别是自适应增强(AdaBoost)算法。研究结果表明,在预测LNM方面,AdaBoost优于传统统计方法和其他机器学习模型,包括随机森林、支持向量机(SVM)和最小绝对收缩和选择算子(LASSO)回归。训练集和验证集的曲线下面积(AUC)分别为0.882和0.857,表明预测效率较高。多因素逻辑回归确定了LNM的关键独立危险因素,包括国际妇产科联盟(FIGO)分期、鳞状细胞癌抗原(SCC-Ag)、白细胞计数(WBC)、中性粒细胞计数(NEUT)、血红蛋白(HGB)水平和前白蛋白(PAB)水平。这些因素在预测LNM方面具有重要意义,并强调了它们在临床决策中的重要性。AdaBoost在术前预测LNM的能力,无需进行淋巴结清扫等侵入性手术,可以降低治疗风险并改善患者预后。虽然其他模型,如XGBoost,在训练中的AUC略高,但AdaBoost在验证中的表现相当(P = 0.18)。炎症和营养标志物,如WBC、NEUT、HGB和PAB,是重要的预测指标,并为肿瘤进展提供了有价值的见解。尽管该研究具有回顾性,但整合更大的多中心数据集和多模态成像可以进一步提高模型的准确性和通用性。这种高性能的AdaBoost模型为优化CC患者的个性化治疗策略提供了临床潜力。