Suppr超能文献

基于血液学指标的机器学习模型用于宫颈癌淋巴结转移的术前预测

Hematological indicator-based machine learning models for preoperative prediction of lymph node metastasis in cervical cancer.

作者信息

Zhao Huan, Wang Yuling, Sun Yilin, Wang Yongqiang, Shi Bo, Liu Jian, Zhang Sai

机构信息

School of Medical Imaging, Bengbu Medical University, Bengbu, Anhui, China.

Department of Gynecology and Oncology, First Affiliated Hospital, Bengbu Medical University, Bengbu, Anhui, China.

出版信息

Front Oncol. 2024 Aug 13;14:1400109. doi: 10.3389/fonc.2024.1400109. eCollection 2024.

Abstract

BACKGROUND

Lymph node metastasis (LNM) is an important prognostic factor for cervical cancer (CC) and determines the treatment strategy. Hematological indicators have been reported as being useful biomarkers for the prognosis of a variety of cancers. This study aimed to evaluate the feasibility of machine learning models characterized by preoperative hematological indicators to predict the LNM status of CC patients before surgery.

METHODS

The clinical data of 236 patients with pathologically confirmed CC were retrospectively analyzed at the Gynecology Oncology Department of the First Affiliated Hospital of Bengbu Medical University from November 2020 to August 2022. The least absolute shrinkage and selection operator (LASSO) was used to select 21 features from 35 hematological indicators and for the construction of 6 machine learning predictive models, including Adaptive Boosting (AdaBoost), Gaussian Naive Bayes (GNB), and Logistic Regression (LR), as well as Random Forest (RF), Support Vector Machines (SVM), and Extreme Gradient Boosting (XGBoost). Evaluation metrics of predictive models included the area under the receiver operating characteristic curve (AUC), accuracy, specificity, sensitivity, and F1-score.

RESULTS

RF has the best overall predictive performance for ten-fold cross-validation in the training set. The specific performance indicators of RF were AUC (0.910, 95% confidence interval [CI]: 0.820-1.000), accuracy (0.831, 95% CI: 0.702-0.960), specificity (0.835, 95% CI: 0.708-0.962), sensitivity (0.831, 95% CI: 0.702-0.960), and F1-score (0.829, 95% CI: 0.696-0.962). RF had the highest AUC in the testing set (AUC = 0.854).

CONCLUSION

RF based on preoperative hematological indicators that are easily available in clinical practice showed superior performance in the preoperative prediction of CC LNM. However, investigations on larger external cohorts of patients are required for further validation of our findings.

摘要

背景

淋巴结转移(LNM)是宫颈癌(CC)的一个重要预后因素,并决定治疗策略。血液学指标已被报道为多种癌症预后的有用生物标志物。本研究旨在评估以术前血液学指标为特征的机器学习模型在术前预测CC患者LNM状态的可行性。

方法

回顾性分析2020年11月至2022年8月在蚌埠医学院第一附属医院妇科肿瘤科收治的236例经病理确诊的CC患者的临床资料。采用最小绝对收缩和选择算子(LASSO)从35项血液学指标中筛选出21项特征,并构建6种机器学习预测模型,包括自适应增强(AdaBoost)、高斯朴素贝叶斯(GNB)、逻辑回归(LR)、随机森林(RF)、支持向量机(SVM)和极端梯度提升(XGBoost)。预测模型的评估指标包括受试者操作特征曲线下面积(AUC)、准确率、特异性、敏感性和F1分数。

结果

在训练集中,随机森林(RF)在十折交叉验证中具有最佳的整体预测性能。随机森林的具体性能指标为AUC(0.910,95%置信区间[CI]:0.820 - 1.000)、准确率(0.831,95%CI:0.702 - 0.960)、特异性(0.835,95%CI:0.708 - 0.962)、敏感性(0.831,95%CI:0.702 - 0.960)和F1分数(0.829,95%CI:0.696 - 0.962)。随机森林在测试集中的AUC最高(AUC = 0.854)。

结论

基于临床实践中易于获得的术前血液学指标构建的随机森林模型在CC患者LNM的术前预测中表现出优异的性能。然而,需要对更大规模的外部患者队列进行研究,以进一步验证我们的研究结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c941/11347340/ce0b42669748/fonc-14-1400109-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验