文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

脑连接组学改善乳腺癌诊断后第一年高风险抑郁状况的预测。

Brain Connectomics Improve the Prediction of High-Risk Depression Profiles in the First Year following Breast Cancer Diagnosis.

作者信息

Liang Mu Zi, Chen Peng, Tang Ying, Tang Xiao Na, Molassiotis Alex, Knobf M Tish, Liu Mei Ling, Hu Guang Yun, Sun Zhe, Yu Yuan Liang, Ye Zeng Jie

机构信息

Guangdong Academy of Population Development, Guangzhou, China.

Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, China.

出版信息

Depress Anxiety. 2024 May 17;2024:3103115. doi: 10.1155/2024/3103115. eCollection 2024.


DOI:10.1155/2024/3103115
PMID:40226711
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11919153/
Abstract

BACKGROUND: Prediction of high-risk depression trajectories in the first year following breast cancer diagnosis with fMRI-related brain connectomics is unclear. METHODS: The Be Resilient to Breast Cancer (BRBC) study is a multicenter trial in which 189/232 participants (81.5%) completed baseline resting-state functional magnetic resonance imaging (rs-fMRI) and four sequential assessments of depression (T0-T3). The latent growth mixture model (LGMM) was utilized to differentiate depression profiles (high vs. low risk) and was followed by multivoxel pattern analysis (MVPA) to recognize distinct brain connectivity patterns. The incremental value of brain connectomics in the prediction model was also estimated. RESULTS: Four depression profiles were recognized and classified into high-risk (delayed and chronic, 14.8% and 12.7%) and low-risk (resilient and recovery, 50.3% and 22.2%). Frontal medial cortex and frontal pole were identified as two important brain areas against the high-risk profile outcome. The prediction model achieved 16.82-76.21% in NRI and 12.63-50.74% in IDI when brain connectomics were included. CONCLUSION: Brain connectomics can optimize the prediction against high-risk depression profiles in the first year since breast cancer diagnoses.

摘要

背景:利用功能磁共振成像(fMRI)相关的脑连接组学预测乳腺癌诊断后第一年的高风险抑郁轨迹尚不清楚。 方法:“对乳腺癌保持坚韧(BRBC)”研究是一项多中心试验,其中189/232名参与者(81.5%)完成了基线静息态功能磁共振成像(rs-fMRI)以及抑郁的四项连续评估(T0 - T3)。采用潜在增长混合模型(LGMM)来区分抑郁特征(高风险与低风险),随后进行多体素模式分析(MVPA)以识别不同的脑连接模式。还估计了脑连接组学在预测模型中的增量价值。 结果:识别出四种抑郁特征,并分为高风险(延迟和慢性,分别为14.8%和12.7%)和低风险(有恢复力和恢复,分别为50.3%和22.2%)。额内侧皮质和额极被确定为针对高风险特征结果的两个重要脑区。当纳入脑连接组学时,预测模型的净重新分类改善(NRI)为16.82 - 76.21%,综合判别改善(IDI)为12.63 - 50.74%。 结论:脑连接组学可以优化对乳腺癌诊断后第一年高风险抑郁特征的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8986/11919153/bced8d2ca73d/DA2024-3103115.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8986/11919153/d694ddd39a18/DA2024-3103115.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8986/11919153/0b65ad96744e/DA2024-3103115.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8986/11919153/c060ba8472fb/DA2024-3103115.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8986/11919153/453f9591c62e/DA2024-3103115.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8986/11919153/bced8d2ca73d/DA2024-3103115.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8986/11919153/d694ddd39a18/DA2024-3103115.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8986/11919153/0b65ad96744e/DA2024-3103115.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8986/11919153/c060ba8472fb/DA2024-3103115.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8986/11919153/453f9591c62e/DA2024-3103115.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8986/11919153/bced8d2ca73d/DA2024-3103115.005.jpg

相似文献

[1]
Brain Connectomics Improve the Prediction of High-Risk Depression Profiles in the First Year following Breast Cancer Diagnosis.

Depress Anxiety. 2024-5-17

[2]
Brain connectomics improve prediction of 1-year decreased quality of life in breast cancer: A multi-voxel pattern analysis.

Eur J Oncol Nurs. 2024-2

[3]
A Longitudinal Correlational Study of Psychological Resilience, Depression Disorder, and Brain Functional-Structural Hybrid Connectome in Breast Cancer.

Depress Anxiety. 2024-11-18

[4]
Brain connectomics markers for response prediction to transcranial magnetic stimulation in cocaine use disorder.

Sci Rep. 2025-5-2

[5]
Associations Between Brain Structural Connectivity and 1-Year Demoralization in Breast Cancer: A Longitudinal Diffusion Tensor Imaging Study.

Depress Anxiety. 2024-9-26

[6]
Quantifying Apathy in Late-Life Depression: Unraveling Neurobehavioral Links Through Daily Activity Patterns and Brain Connectivity Analysis.

Biol Psychiatry Cogn Neurosci Neuroimaging. 2024-7

[7]
Test-retest reliability of graph metrics in high-resolution functional connectomics: a resting-state functional MRI study.

CNS Neurosci Ther. 2015-10

[8]
Outcome Prediction for Patient with High-Grade Gliomas from Brain Functional and Structural Networks.

Med Image Comput Comput Assist Interv. 2016-10

[9]
Atomic connectomics signatures for characterization and differentiation of mild cognitive impairment.

Brain Imaging Behav. 2015-12

[10]
Whole-brain estimates of directed connectivity for human connectomics.

Neuroimage. 2021-1-15

引用本文的文献

[1]
The interplay between sleep and cancer-related fatigue in breast cancer: A casual and computer-simulated network analysis.

Asia Pac J Oncol Nurs. 2025-3-21

本文引用的文献

[1]
Brain connectomics improve prediction of 1-year decreased quality of life in breast cancer: A multi-voxel pattern analysis.

Eur J Oncol Nurs. 2024-2

[2]
Heterogeneity in resilience patterns and its prediction of 1-year quality of life outcomes among patients with newly diagnosed cancer: An exploratory piecewise growth mixture model analysis.

Eur J Oncol Nurs. 2023-10

[3]
Incidence, mortality, survival, and disease burden of breast cancer in China compared to other developed countries.

Asia Pac J Clin Oncol. 2023-12

[4]
Measuring resilience by cognitive diagnosis models and its prediction of 6-month quality of life in Be Resilient to Breast Cancer (BRBC).

Front Psychiatry. 2023-2-16

[5]
Measurement invariance of the 10-item resilience scale specific to cancer in Americans and Chinese: A propensity score-based multidimensional item response theory analysis.

Asia Pac J Oncol Nurs. 2022-11-26

[6]
Resilience index improves prediction of 1-year decreased quality of life in breast cancer.

J Cancer Surviv. 2023-6

[7]
Improving power in functional magnetic resonance imaging by moving beyond cluster-level inference.

Proc Natl Acad Sci U S A. 2022-8-9

[8]
Reproducible brain-wide association studies require thousands of individuals.

Nature. 2022-3

[9]
New resilience instrument for family caregivers in cancer: a multidimensional item response theory analysis.

Health Qual Life Outcomes. 2021-11-18

[10]
Breast cancer incidence and mortality in women in China: temporal trends and projections to 2030.

Cancer Biol Med. 2021-5-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索