Suppr超能文献

肾综合征出血热严重程度的预测因素

Predictors of Severity in Hemorrhagic Fever with Renal Syndrome.

作者信息

Huang Lihua, Wu Jun, Luo Jiao, Gu Wei

机构信息

Department of Infection Disease, The First Affiliated Hospital of Dali University, Dali, Yunnan, People's Republic of China.

Department of Ophthalmology, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan, People's Republic of China.

出版信息

Int J Gen Med. 2025 Apr 9;18:2033-2045. doi: 10.2147/IJGM.S518644. eCollection 2025.

Abstract

OBJECTIVE

To explore the risk factors for the severity of hemorrhagic fever with renal syndrome (HFRS) and construct a nomogram model.

METHODS

A retrospective analysis was conducted on the data of 191 patients diagnosed with HFRS at the First Affiliated Hospital of Dali University between January 1, 2013, and September 30, 2024. Based on whether severe disease occurred, the patients were divided into a severe HFRS group (n=42) and a mild HFRS group (n=149). The clinical data of the two groups were compared, and after eliminating the influence of collinearity, LASSO-Logistic regression analysis was used to screen for factors influencing the severity of HFRS. Additionally, a nomogram model was constructed to predict the severity of HFRS.

RESULTS

Compared with the mild HFRS group, patients in the severe HFRS group had a prolonged length of stay, increased usage rates of Continuous Renal Replacement Therapy (CRRT) and ventilators, and an elevated 30-day mortality rate (<0.001). Procalcitonin (PCT, OR= 0.86), Albumin (ALB, OR: 0.86), Platelet count-to-Albumin ratio (PAR, OR: 0.64), and pleural effusion (OR: 4.49) were identified as independent risk factors for severe HFRS. The Area Under Curve (AUC) of the nomogram model was 0.890. The Hosmer-Lemeshow test result was χ²=2.92, =0.94, and in combination with the Calibration curve, it indicated a good fit between the calibration curve and the ideal curve. Most of the Decision Curve Analysis (DCA) curves of the nomogram model were above the two extreme lines, suggesting that using this model to predict severe HFRS patients could clinically benefit those with severe HFRS, demonstrating the clinical practicality of the nomogram model.

CONCLUSION

PCT, ALB, PAR, and pleural effusion are risk factors for the severity of HFRS. The constructed nomogram model exhibits good discriminatory power, fit, and clinical practicality, enabling early identification of patients with severe HFRS in southwestern China.

摘要

目的

探讨肾综合征出血热(HFRS)严重程度的危险因素并构建列线图模型。

方法

对大理大学第一附属医院2013年1月1日至2024年9月30日确诊为HFRS的191例患者的数据进行回顾性分析。根据是否发生重症疾病,将患者分为重症HFRS组(n = 42)和轻症HFRS组(n = 149)。比较两组的临床资料,在消除共线性影响后,采用LASSO-Logistic回归分析筛选影响HFRS严重程度的因素。此外,构建列线图模型以预测HFRS的严重程度。

结果

与轻症HFRS组相比,重症HFRS组患者住院时间延长,连续性肾脏替代治疗(CRRT)和呼吸机使用率增加,30天死亡率升高(<0.001)。降钙素原(PCT,OR = 0.86)、白蛋白(ALB,OR:0.86)、血小板计数与白蛋白比值(PAR,OR:0.64)和胸腔积液(OR:4.49)被确定为重症HFRS的独立危险因素。列线图模型的曲线下面积(AUC)为0.890。Hosmer-Lemeshow检验结果为χ² = 2.92,P = 0.94,结合校准曲线,表明校准曲线与理想曲线拟合良好。列线图模型的多数决策曲线分析(DCA)曲线位于两条极端线之上,表明使用该模型预测重症HFRS患者对临床重症HFRS患者有益,证明了列线图模型的临床实用性。

结论

PCT、ALB、PAR和胸腔积液是HFRS严重程度的危险因素。构建的列线图模型具有良好的鉴别能力、拟合度和临床实用性,能够早期识别中国西南部的重症HFRS患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23f4/11994104/c896420a8645/IJGM-18-2033-g0001.jpg

相似文献

1
Predictors of Severity in Hemorrhagic Fever with Renal Syndrome.
Int J Gen Med. 2025 Apr 9;18:2033-2045. doi: 10.2147/IJGM.S518644. eCollection 2025.
2
Analysis of clinical characteristics of hemorrhagic fever with renal syndrome with acute pancreatitis: a retrospective study.
Ann Med. 2025 Dec;57(1):2453081. doi: 10.1080/07853890.2025.2453081. Epub 2025 Jan 20.
5
[Construction and verification of a nomogram of factors influencing the risk of death in patient with sepsis-associated thrombocytopenia].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2024 Feb;36(2):131-136. doi: 10.3760/cma.j.cn121430-20230421-00307.
7
[Establishment of nomogram predicting model for the death risk of extremely severe burn patients and the predictive value].
Zhonghua Shao Shang Za Zhi. 2020 Sep 20;36(9):845-852. doi: 10.3760/cma.j.cn501120-20190620-00280.
8
[Establishment of a nomogram prediction model for 28-day mortality of septic shock patients based on routine laboratory data mining].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2024 Nov;36(11):1127-1132. doi: 10.3760/cma.j.cn121430-20240202-00108.
9
A novel nomogram for predicting mortality risk in young and middle-aged patients undergoing maintenance hemodialysis: a retrospective study.
Front Med (Lausanne). 2025 Jan 7;11:1508485. doi: 10.3389/fmed.2024.1508485. eCollection 2024.

本文引用的文献

4
Hantavirus in humans: a review of clinical aspects and management.
Lancet Infect Dis. 2023 Sep;23(9):e371-e382. doi: 10.1016/S1473-3099(23)00128-7. Epub 2023 Apr 24.
7
Exosomal miRNA-155 and miRNA-146a are promising prognostic biomarkers of the severity of hemorrhagic fever with renal syndrome.
Noncoding RNA Res. 2022 Oct 27;8(1):75-82. doi: 10.1016/j.ncrna.2022.10.003. eCollection 2023 Mar.
8
[Hantavirus infections].
Rev Med Suisse. 2022 Oct 12;18(799):1900-1903. doi: 10.53738/REVMED.2022.18.799.1900.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验