Širůček Jakub, Le Guennic Boris, Damour Yann, Loos Pierre-François, Jacquemin Denis
CNRS, CEISAM UMR 6230, Nantes Université, F-44000 Nantes, France.
CNRS, ISCR UMR 6226, Univ Rennes, F-35042 Rennes, France.
J Chem Theory Comput. 2025 May 13;21(9):4688-4703. doi: 10.1021/acs.jctc.5c00159. Epub 2025 Apr 14.
Excited-state absorption (ESA) corresponds to the transition between two electronic excited states and is a fundamental process for probing and understanding light-matter interactions. Accurate modeling of ESA is indeed often required to interpret time-resolved experiments. In this contribution, we present a dataset of 53 ESA oscillator strengths in three different gauges and the associated vertical transition energies between 71 excited states of 21 small- and medium-sized molecules from the QUEST database. In a few cases, we additionally investigated the effect of geometry relaxation on excited-state geometries. The reference values were obtained within the quadratic response (QR) CC3 formalism using eight different Dunning basis sets. We found that the d--cc-pVTZ basis set is always adequate while its more compact double-ζ counterpart, d--cc-pVDZ, performs well in most cases. These QR-CC3 data allow us to assess the performance of QR-TDDFT, with and without applying the Tamm-Dancoff approximation, using a panel of global and range-separated hybrids (B3LYP, BH&HLYP, CAM-B3LYP, LC-BLYP33, and LC-BLYP47), as well as several lower-order wave function methods, i.e., QR-CCSD, QR-CC2, EOM-CCSD, ISR-ADC(2), and ISR-ADC(3). We show that QR-TDDFT delivers acceptable errors for ESA oscillator strengths with CAM-B3LYP showing particular promise, especially for the largest molecules of our set, and in the Franck-Condon (FC) region. We also find that ISR-ADC(3) exhibits excellent performance in this region. When using excited-state optimal geometries, the relative performance of wave function-based approaches remains consistent with trends observed in the Franck-Condon region. However, for TD(A)-DFT, the accuracy varies more significantly, as the performance of different exchange-correlation functionals significantly depends on the chosen geometry.
激发态吸收(ESA)对应于两个电子激发态之间的跃迁,是探测和理解光与物质相互作用的一个基本过程。准确模拟ESA对于解释时间分辨实验确实常常是必要的。在本论文中,我们展示了来自QUEST数据库的21个中小分子的71个激发态之间的53个ESA振子强度数据集,这些数据集采用了三种不同的规范以及相关的垂直跃迁能量。在少数情况下,我们还研究了几何结构弛豫对激发态几何结构的影响。参考值是在二次响应(QR)CC3形式体系下使用八个不同的邓宁基组获得的。我们发现d--cc-pVTZ基组总是足够的,而其更紧凑的双ζ对应基组d--cc-pVDZ在大多数情况下表现良好。这些QR-CC3数据使我们能够使用一组全局和范围分离的杂化泛函(B3LYP、BH&HLYP、CAM-B3LYP、LC-BLYP33和LC-BLYP47)以及几种低阶波函数方法,即QR-CCSD、QR-CC2、EOM-CCSD、ISR-ADC(2)和ISR-ADC(3),来评估QR-TDDFT在应用和不应用塔姆-丹科夫近似时的性能。我们表明,QR-TDDFT对于ESA振子强度能给出可接受的误差,其中CAM-B3LYP表现出特别的潜力,尤其是对于我们数据集中最大的分子以及在弗兰克-康登(FC)区域。我们还发现ISR-ADC(3)在该区域表现出优异的性能。当使用激发态最优几何结构时,基于波函数的方法的相对性能与在弗兰克-康登区域观察到的趋势保持一致。然而,对于TD(A)-DFT,准确性变化更为显著,因为不同交换相关泛函的性能显著取决于所选的几何结构。