Loos Pierre-François, Lipparini Filippo, Boggio-Pasqua Martial, Scemama Anthony, Jacquemin Denis
Laboratoire de Chimie et Physique Quantiques, CNRS et Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France.
Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Moruzzi 3, 56124 Pisa, Italy.
J Chem Theory Comput. 2020 Mar 10;16(3):1711-1741. doi: 10.1021/acs.jctc.9b01216. Epub 2020 Feb 6.
Following our previous work focusing on compounds containing up to 3 non-hydrogen atoms [ , , 4360-4379], we present here highly accurate vertical transition energies obtained for 27 molecules encompassing 4, 5, and 6 non-hydrogen atoms: acetone, acrolein, benzene, butadiene, cyanoacetylene, cyanoformaldehyde, cyanogen, cyclopentadiene, cyclopropenone, cyclopropenethione, diacetylene, furan, glyoxal, imidazole, isobutene, methylenecyclopropene, propynal, pyrazine, pyridazine, pyridine, pyrimidine, pyrrole, tetrazine, thioacetone, thiophene, thiopropynal, and triazine. To obtain these energies, we use equation-of-motion/linear-response coupled cluster theory up to the highest technically possible excitation order for these systems (CC3, EOM-CCSDT, and EOM-CCSDTQ) and selected configuration interaction (SCI) calculations (with tens of millions of determinants in the reference space), as well as the multiconfigurational -electron valence state perturbation theory (NEVPT2) method. All these approaches are applied in combination with diffuse-containing atomic basis sets. For all transitions, we report at least CC3/-cc-pVQZ vertical excitation energies as well as CC3/-cc-pVTZ oscillator strengths for each dipole-allowed transition. We show that CC3 almost systematically delivers transition energies in agreement with higher-level methods with a typical deviation of ±0.04 eV, except for transitions with a dominant double excitation character where the error is much larger. The present contribution gathers a large, diverse, and accurate set of more than 200 highly accurate transition energies for states of various natures (valence, Rydberg, singlet, triplet, → π*, π → π*, ...). We use this series of theoretical best estimates to benchmark a series of popular methods for excited state calculations: CIS(D), ADC(2), CC2, STEOM-CCSD, EOM-CCSD, CCSDR(3), CCSDT-3, CC3, and NEVPT2. The results of these benchmarks are compared to the available literature data.
继我们之前专注于含至多3个非氢原子的化合物的工作[,,4360 - 4379]之后,我们在此展示了对包含4、5和6个非氢原子的27种分子获得的高精度垂直跃迁能:丙酮、丙烯醛、苯、丁二烯、氰基乙炔、氰基甲醛、氰、环戊二烯、环丙烯酮、环丙烯硫酮、丁二炔、呋喃、乙二醛、咪唑、异丁烯、亚甲基环丙烯、丙炔醛、吡嗪、哒嗪、吡啶、嘧啶、吡咯、四嗪、硫代丙酮、噻吩、硫代丙炔醛和三嗪。为了获得这些能量,我们使用运动方程/线性响应耦合簇理论,达到这些体系技术上可能的最高激发阶数(CC3、EOM - CCSDT和EOM - CCSDTQ)以及选定的组态相互作用(SCI)计算(参考空间中有数千万个行列式),以及多组态 - 电子价态微扰理论(NEVPT2)方法。所有这些方法都与包含弥散函数的原子基组结合使用。对于所有跃迁,我们报告每个允许偶极跃迁的至少CC3 / - cc - pVQZ垂直激发能以及CC3 / - cc - pVTZ振子强度。我们表明,CC3几乎系统地给出与更高层次方法一致的跃迁能,典型偏差为±0.04 eV,但具有主导双激发特征的跃迁除外,其误差要大得多。本研究贡献收集了一大组多样且准确的200多个高精度跃迁能,用于各种性质的态(价态、里德堡态、单重态、三重态、→π*、π→π*等)。我们使用这一系列理论最佳估计值来对标一系列用于激发态计算的常用方法:CIS(D)、ADC(2)、CC2、STEOM - CCSD、EOM - CCSD、CCSD R(3)、CCSDT - 3、CC3和NEVPT2。这些对标结果与现有的文献数据进行了比较。