Wei Qikun, Rojas Daniel, Wang Qianyu, Zapata-Pérez Ruben, Xuan Xing, Molinero-Fernández Águeda, Crespo Gastón A, Cuartero María
Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, Stockholm SE-114 28, Sweden.
UCAM-SENS, Universidad Católica San Antonio de Murcia, UCAM HiTech, Avda. Andres Hernandez Ros 1, Murcia 30107, Spain.
ACS Sens. 2025 Jun 27;10(6):4027-4037. doi: 10.1021/acssensors.4c03681. Epub 2025 Apr 14.
Accurate temperature monitoring plays a crucial role in understanding the physiological status of patients and the early diagnosis of diseases commonly associated with local and global infections. Intradermal temperature measurement is, in principle, more precise than skin surface detection, as it prevents interference from environmental temperature changes and skin secretions. However, to date, precise and reliable intradermal temperature monitoring in a real-time and continuous manner remains a challenge. We propose herein high-resolution 3D printing to fabricate a mechanically robust and biocompatible hollow microneedle, filled with a temperature-responsive conducting polymer (poly(3,4-ethylenedioxythiophene): polystyrenesulfonate, PEDOT:PSS) to develop a microneedle temperature sensor (T-MN). The significance is 2-fold: rational design of robust MNs with high resolution in the micrometer domain and the implementation of a conducting polymer in a MN format for temperature sensing. The analytical performance of the developed T-MN is in vitro evaluated under mimicked intradermal conditions, demonstrating good sensitivity (-0.74%° C), resolution (0.2 °C), repeatability (RSD = 2%), reproducibility (RSD = 2%), reversibility, and medium-term stability. On-body temperature monitoring is performed on six euthanized rats for 80 min. The results presented good agreement with those obtained using a commercial optical temperature probe, which was intradermally inserted into the rat skin. The reliability of utilizing the T-MN for precise and continuous intradermal temperature monitoring was successfully demonstrated, noting its potential use for patient monitoring in the near future but also temperature compensation for MN (bio)sensors that may need it.
精确的体温监测对于了解患者的生理状态以及常见的局部和全身感染相关疾病的早期诊断起着至关重要的作用。原则上,皮内温度测量比皮肤表面检测更精确,因为它可以防止环境温度变化和皮肤分泌物的干扰。然而,迄今为止,以实时和连续的方式进行精确可靠的皮内温度监测仍然是一项挑战。我们在此提出使用高分辨率3D打印制造一种机械坚固且生物相容的中空微针,其填充有温度响应性导电聚合物(聚(3,4 - 乙撑二氧噻吩):聚苯乙烯磺酸盐,PEDOT:PSS),以开发一种微针温度传感器(T - MN)。其意义有两方面:在微米尺度上合理设计具有高分辨率的坚固微针,以及以微针形式实现用于温度传感的导电聚合物。所开发的T - MN的分析性能在模拟皮内条件下进行体外评估,结果表明其具有良好的灵敏度(-0.74%/°C)、分辨率(0.2 °C)、重复性(RSD = 2%)、再现性(RSD = 2%)、可逆性和中期稳定性。在六只安乐死的大鼠身上进行了80分钟的体表温度监测。结果与使用商业光学温度探头皮内插入大鼠皮肤所获得的结果高度一致。成功证明了利用T - MN进行精确和连续皮内温度监测的可靠性,指出其在不久的将来用于患者监测的潜在用途,同时也可用于可能需要的MN(生物)传感器的温度补偿。
JMIR Mhealth Uhealth. 2025-6-13
Cochrane Database Syst Rev. 2016-4-21
Cochrane Database Syst Rev. 2005-7-20
ACS Appl Mater Interfaces. 2025-6-25
Cochrane Database Syst Rev. 2016-5-9
Health Technol Assess. 2001
Cochrane Database Syst Rev. 2025-2-19
Health Technol Assess. 2001
Micromachines (Basel). 2025-8-13
BioData Min. 2025-8-19
Front Med (Lausanne). 2023-10-31
Nat Biomed Eng. 2023-12