Vladymyrov Mykhailo, Marchetti Luca, Aydin Sidar, Soldati Sasha G N, Mossu Adrien, Pal Arindam, Gueissaz Laurent, Ariga Akitaka, Engelhardt Britta
Theodor Kocher Institute, Bern, Switzerland.
Data Science Lab, Bern, Switzerland.
Elife. 2025 Apr 15;13:RP91150. doi: 10.7554/eLife.91150.
The endothelial blood-brain barrier (BBB) strictly controls immune cell trafficking into the central nervous system (CNS). In neuroinflammatory diseases such as multiple sclerosis, this tight control is, however, disturbed, leading to immune cell infiltration into the CNS. The development of in vitro models of the BBB combined with microfluidic devices has advanced our understanding of the cellular and molecular mechanisms mediating the multistep T-cell extravasation across the BBB. A major bottleneck of these in vitro studies is the absence of a robust and automated pipeline suitable for analyzing and quantifying the sequential interaction steps of different immune cell subsets with the BBB under physiological flow in vitro. Here, we present the under-flow migration tracker (Track) framework for studying immune cell interactions with endothelial monolayers under physiological flow. We then showcase a pipeline built based on it to study the entire multistep extravasation cascade of immune cells across brain microvascular endothelial cells under physiological flow in vitro. Track achieves 90% track reconstruction efficiency and allows for scaling due to the reduction of the analysis cost and by eliminating experimenter bias. This allowed for an in-depth analysis of all behavioral regimes involved in the multistep immune cell extravasation cascade. The study summarizes how Track can be employed to delineate the interactions of CD4 and CD8 T cells with the BBB under physiological flow. We also demonstrate its applicability to the other BBB models, showcasing broader applicability of the developed framework to a range of immune cell-endothelial monolayer interaction studies. The Track framework along with the generated datasets is publicly available in the corresponding repositories.
内皮血脑屏障(BBB)严格控制免疫细胞向中枢神经系统(CNS)的迁移。然而,在诸如多发性硬化症等神经炎症性疾病中,这种严格的控制受到干扰,导致免疫细胞浸润到CNS中。结合微流控装置的BBB体外模型的发展,加深了我们对介导T细胞跨BBB多步骤外渗的细胞和分子机制的理解。这些体外研究的一个主要瓶颈是缺乏一个强大且自动化的流程,适用于在体外生理流动条件下分析和量化不同免疫细胞亚群与BBB的顺序相互作用步骤。在此,我们提出了用于研究生理流动条件下免疫细胞与内皮单层相互作用的暗流迁移追踪器(Track)框架。然后,我们展示了一个基于该框架构建的流程,用于研究体外生理流动条件下免疫细胞跨脑微血管内皮细胞的整个多步骤外渗级联反应。Track实现了90%的轨迹重建效率,并且由于降低了分析成本和消除了实验者偏差而允许进行扩展。这使得能够对多步骤免疫细胞外渗级联反应中涉及的所有行为模式进行深入分析。该研究总结了如何利用Track来描绘生理流动条件下CD4和CD8 T细胞与BBB的相互作用。我们还展示了其在其他BBB模型中的适用性,表明所开发的框架在一系列免疫细胞 - 内皮单层相互作用研究中具有更广泛的适用性。Track框架以及生成的数据集可在相应的存储库中公开获取。