Suppr超能文献

用于长循环和高能全固态锂金属电池的多元分布结构各向异性无机聚合物复合电解质

Multivariate Distribution Structured Anisotropic Inorganic Polymer Composite Electrolyte for Long-Cycle and High-Energy All-Solid-State Lithium Metal Batteries.

作者信息

Yang Ziqiang, Yang Bin, Wang Sen, Qian Jiasheng, Hou Zhiguo, Li Xiaona

机构信息

School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, China.

Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, 315200, China.

出版信息

Angew Chem Int Ed Engl. 2025 Jul 21;64(30):e202423227. doi: 10.1002/anie.202423227. Epub 2025 Apr 24.

Abstract

Solid polymer electrolytes are promising candidates for solid-state Li metal batteries owing to their favorable rheological properties and interfacial compatibility with cathodes and Li anodes. However, their limited ionic conductivity and low modulus lead to inferior electrochemical performance and dendrite growth. Herein, we developed a composite solid-state electrolyte comprising vermiculite sheets and a poly(vinylidene fluoride) (PVDF) matrix with multivariate distribution and an anisotropic structure. Within this assembly, some vermiculite sheets were suspended in the PVDF matrix to facilitate Li salt dissociation and Li transport, while others were tiled on the electrolyte surface, generating a dense, high-modulus LiSiO-rich solid electrolyte interphase via in situ electrochemical reduction, which further improved interfacial kinetics and suppressed dendrite growth. As a result, a high conductivity of 1.38 mS cm was achieved at room temperature, and the Li||Li cells displayed robust stability over 3000 h. The LiNiCoMnO||Li full cells delivered a specific capacity of 172 mAh g at 0.2 C and 86% capacity retention after 500 cycles at 0.5 C. Additionally, practical cycle performance at a high loading (4.4 mAh cm) was achieved in pouch cells. Overall, multivariate distribution and anisotropic structuring offers a novel perspective for the preparation of high-performance solid-state electrolytes.

摘要

固态聚合物电解质因其良好的流变学特性以及与阴极和锂阳极的界面兼容性,成为固态锂金属电池的理想候选材料。然而,其有限的离子电导率和低模量导致电化学性能较差且会出现枝晶生长。在此,我们开发了一种复合固态电解质,它由蛭石板和具有多变量分布及各向异性结构的聚偏二氟乙烯(PVDF)基体组成。在这种组装结构中,一些蛭石板悬浮在PVDF基体中以促进锂盐解离和锂传输,而其他蛭石板则平铺在电解质表面,通过原位电化学还原生成致密、高模量的富含LiSiO的固体电解质界面层,这进一步改善了界面动力学并抑制了枝晶生长。结果,在室温下实现了1.38 mS cm的高电导率,Li||Li电池在3000小时以上表现出强大的稳定性。LiNiCoMnO||Li全电池在0.2 C下的比容量为172 mAh g,在0.5 C下循环500次后容量保持率为86%。此外,软包电池实现了高负载(4.4 mAh cm)下的实际循环性能。总体而言,多变量分布和各向异性结构为制备高性能固态电解质提供了新的视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验