Suppr超能文献

调控微孔中的离子传输微环境以精确构建用于固态锂金属电池的多孔聚合物电解质

The Regulation of Ion Transport Microenvironment in Micropores to Precisely Construct Porous Polymer Electrolytes for Solid-State Lithium-Metal Batteries.

作者信息

Lu Songxin, He Kuan, Zhou Lingxi, Xu Weijian, Lin Xiaoxin, Chen Changhong, Lin Yu, He Jiahui, Xu Yongbin, Tian Lei

机构信息

College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China.

School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China.

出版信息

ACS Nano. 2025 Jul 1;19(25):23450-23464. doi: 10.1021/acsnano.5c07105. Epub 2025 Jun 17.

Abstract

Porous solid-state polymer electrolytes have emerged as promising candidates for next-generation batteries owing to their superior safety, excellent interfacial compatibility, and efficient ion transport properties. However, systematically tuning the Li solvent microenvironment within the micropores of PIMs (inherent microporous polymers) to significantly enhance Li conduction remains unexplored. Herein, we propose a strategy for performing microenvironmental engineering within microporous channels. By creating interconnected subnanometer-scale ion transport channels within a rigid and twisted PIM backbone, we precisely regulate the Li solvent interactions in the pore microenvironment. This dual optimization enables the porous polymer electrolyte to exhibit an excellent room-temperature ionic conductivity of 1.08 × 10 S cm, a high lithium-ion transference number (0.88), and wide electrochemical window (5.2 V). These superior electrochemical properties allow the assembled Li-Li symmetric battery to achieve stable deposition/plating over 1500 h at 0.1 mA cm. Consequently, the assembled LFP|PIM-CONH|Li delivers an initial discharge specific capacity of 158.2 mAh g at 0.5 and 25 °C, with a capacity retention rate of 93.6% after 400 cycles. More notably, the assembled pouch cells still exhibit a high discharge specific capacity of 139.2 mAh g after folding and cutting under 0.5 C. Moreover, the introduction of our proposed nonflammable PIM-CONH electrolyte represents a significant advancement, facilitating the transition toward the practical implementation of high-safety and high-energy-density solid-state batteries.

摘要

多孔固态聚合物电解质因其卓越的安全性、出色的界面兼容性和高效的离子传输性能,已成为下一代电池的有力候选材料。然而,系统地调节固有微孔聚合物(PIMs)微孔内的锂溶剂微环境以显著提高锂传导率,这一点仍未得到探索。在此,我们提出一种在微孔通道内进行微环境工程的策略。通过在刚性且扭曲的PIM主链内创建相互连接的亚纳米级离子传输通道,我们精确调控了孔微环境中的锂溶剂相互作用。这种双重优化使多孔聚合物电解质展现出优异的室温离子电导率,达到1.08×10 S cm,高锂离子迁移数(0.88)以及宽电化学窗口(5.2 V)。这些卓越的电化学性能使得组装的锂-锂对称电池在0.1 mA cm下能够稳定沉积/镀覆超过1500小时。因此,组装的LFP|PIM-CONH|Li在0.5 C和25°C下的初始放电比容量为158.2 mAh g,400次循环后的容量保持率为93.6%。更值得注意的是,组装的软包电池在0.5 C下折叠和切割后仍表现出139.2 mAh g的高放电比容量。此外,我们所提出的不可燃PIM-CONH电解质的引入是一项重大进展,有助于向高安全性和高能量密度固态电池的实际应用迈进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验