Suppr超能文献

卤化物钙钛矿纳米晶体-染料杂化物中通过能量转移进行的光子管理:单线态与三线态调控

Photon Management Through Energy Transfer in Halide Perovskite Nanocrystal-Dye Hybrids: Singlet vs Triplet Tuning.

作者信息

Chakkamalayath Jishnudas, Chemmangat Akshaya, DuBose Jeffrey T, Kamat Prashant V

机构信息

Radiation Laboratory, Department of Chemistry and Biochemistry, and Department of Chemical and Biomolecular Engineering University of Notre Dame, Notre Dame, Indiana 46556, United States.

出版信息

Acc Chem Res. 2025 May 6;58(9):1461-1472. doi: 10.1021/acs.accounts.5c00097. Epub 2025 Apr 15.

Abstract

ConspectusPhotoinduced energy and electron transfer processes offer a convenient way to convert light energy into electrical or chemical energy. These processes remain the basis of operation of thin film solar cells, light emitting and optoelectronic devices, and solar fuel generation. In many of these applications, semiconductor nanocrystals that absorb in the visible and near-infrared region are the building blocks that harvest photons and initiate energy or electron transfer to surface-bound chromophores. Such multifunctional aspects make it challenging to steer the energy transfer pathway selectively. Proper selection of the semiconductor nanocrystal donor requires consideration of the nanocrystal bandgap, along with the alignment of valence and conduction band energies relative to that of the acceptor, in order to achieve desired output of energy or electron transfer.In this Account, we focus on key aspects of managing energy flow from excited semiconductor nanocrystals to surface-bound chromophores. The singlet and triplet characteristics of the semiconductor nanoparticle enable tuning of energy transfer pathways through bandgap engineering. In addition to the alignment of energy levels between the semiconductor donor and the singlet/triplet energy levels of the acceptor dye, other parameters such as spectral overlap, surface binding through functional groups, and rate of competing energy transfer pathways all play integral roles in directing energy transfer. For example, in a prototypical halide perovskite nanocrystal-rhodamine dye assembly, singlet energy transfer is observed when the donor is a high-bandgap semiconductor (e.g., CsPbBr, = 2.47 eV). However, when the donor is a low-bandgap semiconductor (e.g., CsPbI, = 1.87 eV), one observes only triplet energy transfer. Tuning of the donor bandgap with mixed halide perovskites (e.g., CsPb(BrI)) allows for populations of both singlet and triplet excited states of the acceptor dye. Additionally, triplet characteristics of the donor semiconductor nanocrystal can be further enhanced through Mn doping which places low-energy triplet-active states within the nanocrystal donor.The ability to steer energy transfer pathways in a semiconductor nanocrystal-dye assembly finds its use in the design of semiconductor-multichromophoric films. Such hybrid films can or incident photons and deliver emission at desired wavelengths. By selecting high energy donor (e.g., CsPbBr) one can the incident photons through energy transfer cascade, as in the case of the CsPbBr-rubrene-tetraphenyldibenzoperiflanthene (DBP) system to populate singlet excited DBP (perylene derivative). On the other hand, when the donor energy is low as in the case of CsPbI-rubrene-DBP, one can populate singlet DBP via triplet-triplet annihilation. Thus, by steering energy transfer pathways, it is possible to manage the photon flow and obtain desired emission output. Fundamental understanding of excited state processes responsible for energy transfer will assist in designing light harvesting assemblies that can manage photon delivery effectively in display devices and other optoelectronic devices.

摘要

综述

光致能量和电子转移过程为将光能转化为电能或化学能提供了一种便捷的方式。这些过程仍然是薄膜太阳能电池、发光和光电器件以及太阳能燃料生成的运作基础。在许多此类应用中,吸收可见光和近红外区域光的半导体纳米晶体是捕获光子并启动能量或电子转移至表面结合发色团的基本单元。这种多功能特性使得选择性地引导能量转移途径具有挑战性。为了实现所需的能量或电子转移输出,正确选择半导体纳米晶体供体需要考虑纳米晶体的带隙,以及价带和导带能量相对于受体的排列。

在本综述中,我们关注从激发的半导体纳米晶体到表面结合发色团的能量流动管理的关键方面。半导体纳米颗粒的单重态和三重态特性能够通过带隙工程调节能量转移途径。除了半导体供体与受体染料的单重态/三重态能级之间的能级排列外,其他参数,如光谱重叠、通过官能团的表面结合以及竞争能量转移途径的速率,在引导能量转移中都起着不可或缺的作用。例如,在典型的卤化物钙钛矿纳米晶体 - 罗丹明染料组装体中,当供体是高带隙半导体(如 CsPbBr,Eg = 2.47 eV)时,观察到单重态能量转移。然而,当供体是低带隙半导体(如 CsPbI,Eg = 1.87 eV)时,只观察到三重态能量转移。用混合卤化物钙钛矿(如 CsPb(BrI))调节供体带隙可使受体染料的单重态和三重态激发态都有分布。此外,通过 Mn 掺杂可以进一步增强供体半导体纳米晶体的三重态特性,这会在纳米晶体供体内产生低能量的三重态活性态。

在半导体纳米晶体 - 染料组装体中引导能量转移途径的能力可用于设计半导体 - 多发色团薄膜。这种混合薄膜可以吸收或捕获入射光子并在所需波长处发射。通过选择高能量供体(如 CsPbBr),可以通过能量转移级联捕获入射光子,就像 CsPbBr - 红荧烯 - 四苯基二苯并苝(DBP)系统的情况一样,以填充单重态激发的 DBP(苝衍生物)。另一方面,当供体能量较低时,如 CsPbI - 红荧烯 - DBP 的情况,可以通过三重态 - 三重态湮灭填充单重态 DBP。因此,通过引导能量转移途径,可以管理光子流并获得所需的发射输出。对负责能量转移的激发态过程的基本理解将有助于设计能够在显示设备和其他光电器件中有效管理光子传递的光捕获组件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验