Suppr超能文献

卤化物钙钛矿-发色团混合组件中的能量转移引导

Directing Energy Transfer in Halide Perovskite-Chromophore Hybrid Assemblies.

作者信息

DuBose Jeffrey T, Kamat Prashant V

机构信息

Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States.

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.

出版信息

J Am Chem Soc. 2021 Nov 17;143(45):19214-19223. doi: 10.1021/jacs.1c09867. Epub 2021 Nov 2.

Abstract

Directing the flow of energy and the nature of the excited states that are produced in nanocrystal-chromophore hybrid assemblies is crucial for realizing their photocatalytic and optoelectronic applications. Using a combination of steady-state and time-resolved absorption and photoluminescence (PL) experiments, we have probed the excited-state interactions in the CsPbBr-Rhodamine B (RhB) hybrid assembly. PL studies reveal quenching of the CsPbBr emission with a concomitant enhancement of the fluorescence of RhB, indicating a singlet-energy-transfer mechanism. Transient absorption spectroscopy shows that this energy transfer occurs on the ∼200 ps time scale. To understand whether the energy transfer occurs through a Förster or Dexter mechanism, we leveraged facile halide-exchange reactions to tune the optical properties of the donor CsPbBr by alloying with chloride. This allowed us to tune the spectral overlap between the donor CsPb(BrCl) emission and acceptor RhB absorption. For CsPbBr-RhB, the rate constant for energy transfer () agrees well with Förster theory, whereas alloying with chloride to produce chloride-rich CsPb(BrCl) favors a Dexter mechanism. These results highlight the importance of optimizing both the donor and acceptor properties to design light-harvesting assemblies that employ energy transfer. The ease of tuning optical properties through halide exchange of the nanocrystal donor provides a unique platform for studying and tailoring excited-state interactions in perovskite-chromophore assemblies.

摘要

引导纳米晶体 - 发色团混合组装体中能量的流动以及所产生激发态的性质,对于实现其光催化和光电应用至关重要。通过结合稳态和时间分辨吸收以及光致发光(PL)实验,我们探究了CsPbBr - 罗丹明B(RhB)混合组装体中的激发态相互作用。PL研究揭示了CsPbBr发射的猝灭以及RhB荧光的相应增强,表明存在单线态能量转移机制。瞬态吸收光谱表明这种能量转移发生在约200 ps的时间尺度上。为了理解能量转移是通过福斯特(Förster)还是德克斯特(Dexter)机制发生的,我们利用简便的卤化物交换反应,通过与氯化物合金化来调节供体CsPbBr的光学性质。这使我们能够调节供体CsPb(BrCl)发射与受体RhB吸收之间的光谱重叠。对于CsPbBr - RhB,能量转移的速率常数()与福斯特理论吻合得很好,而与氯化物合金化以产生富含氯化物的CsPb(BrCl)则有利于德克斯特机制。这些结果突出了优化供体和受体性质对于设计采用能量转移的光捕获组装体的重要性。通过纳米晶体供体的卤化物交换来调节光学性质的简便性,为研究和定制钙钛矿 - 发色团组装体中的激发态相互作用提供了一个独特的平台。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验