Suppr超能文献

具有可调刚度的无束缚微型张拉整体机器人,用于高速和自适应运动。

Untethered Miniature Tensegrity Robot with Tunable Stiffness for High-Speed and Adaptive Locomotion.

作者信息

Chen Bingxing, He Zhiyu, Ye Fang, Yang Yi, Chen Wenhu, Ding Fuhui, Gao Dan, Zhao Yi, Lu Zongxing, Jia Chao

机构信息

School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China.

Department of Mathematics and Science, Fujian Jiangxia University, Fuzhou, China.

出版信息

Soft Robot. 2025 Apr 15. doi: 10.1089/soro.2024.0178.

Abstract

Miniature robots are increasingly used in unstructured environments and require higher mobility, robustness, and multifunctionality. However, existing purely soft and rigid designs suffer from inherent defects, such as low load capacity and compliance, respectively, restricting their functionality and performance. Here, we report new soft-rigid hybrid miniature robots applying the tensegrity principle, inspired by biological organisms' remarkable multifunctionality through tensegrity micro-structures. The miniature robot's speed of 25.07 body lengths per second is advanced among published miniature robots and tensegrity robots. The design versatility is demonstrated by constructing three bio-inspired robots using miniature tensegrity joints. Due to its internal load-transfer mechanisms, the robot has self-adaptability, deformability, and high impact resistance (withstand dynamic load 143,868 times the robot weight), enabling the robot to navigate diverse barriers, pipelines, and channels. The robot can vary its stiffness to greatly improve load capacity and motion performance. We further demonstrate the potential biomedical applications, such as drug delivery, impurity removal, and remote heating achieved by integrating metal into the robot.

摘要

微型机器人越来越多地应用于非结构化环境中,并且需要更高的机动性、鲁棒性和多功能性。然而,现有的纯软质和硬质设计分别存在固有缺陷,如负载能力低和柔顺性差,这限制了它们的功能和性能。在此,我们报告了一种新型的软硬混合微型机器人,其应用了张拉整体原理,该原理的灵感来源于生物有机体通过张拉整体微结构所展现出的卓越多功能性。该微型机器人每秒25.07个机身长度的速度在已发表的微型机器人和张拉整体机器人中处于先进水平。通过使用微型张拉整体关节构建三个受生物启发的机器人,展示了其设计的多功能性。由于其内部的载荷传递机制,该机器人具有自适应性、可变形性和高抗冲击性(能承受143,868倍机器人重量的动态载荷),使其能够在各种障碍物、管道和通道中导航。该机器人可以改变其刚度,从而大大提高负载能力和运动性能。我们进一步展示了其在生物医学方面的潜在应用,例如通过将金属集成到机器人中实现药物递送、杂质清除和远程加热。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验