Suppr超能文献

一种具有双操作模式的用于机器人驱动的对称三自由度张拉整体机构。

A Symmetric Three Degree of Freedom Tensegrity Mechanism with Dual Operation Modes for Robot Actuation.

作者信息

Wang Tianyuan, Post Mark A

机构信息

Department of Electronic Engineering, University of York, Heslington, York YO10 5DD, UK.

出版信息

Biomimetics (Basel). 2021 May 18;6(2):30. doi: 10.3390/biomimetics6020030.

Abstract

Tensegrity robots that use bio-inspired structures have many superior properties over conventional robots with regard to strength, weight, compliance and robustness, which are indispensable to planetary exploration and harsh environment applications. Existing research has presented various tensegrity robots with abundant capabilities in broad scenarios but mostly not focused on articulation and manipulability. In this paper, we propose a novel tensegrity mechanism for robot actuation which greatly improves the agility and efficiency compared with existing ones. The design integrates two separate tensegrity substructures inspired by shoulder and hip joints of the human body and features a similar form to a hexapod platform. It mitigates detrimental antagonistic forces in the structural network for optimising actuation controllability and efficiency. We validated the design both on a prototype and in a Chrono Engine simulation that represents the first physically accurate simulation of a wheeled tensegrity robot. It can reach up to approximately 58.9∘, 59.4∘ and 47.1∘ in pitch, yaw and roll motion, respectively. The mechanism demonstrates good agility and controllability as an actuated robot linkage while preserving desirable properties of tensegrity structures. The design would potentially inspire more possibilities of agile tensegrity implementations that enable future robots with enhanced compliance, robustness and efficiency without a tradeoff.

摘要

采用仿生结构的张拉整体机器人在强度、重量、柔顺性和坚固性方面比传统机器人具有许多优越性能,这些性能对于行星探索和恶劣环境应用来说不可或缺。现有研究已经展示了各种在广泛场景中具备丰富能力的张拉整体机器人,但大多没有聚焦于关节活动度和可操作性。在本文中,我们提出了一种用于机器人驱动的新型张拉整体机构,与现有机构相比,它极大地提高了敏捷性和效率。该设计整合了受人体肩部和髋关节启发的两个独立的张拉整体子结构,其外形类似于六足平台。它减轻了结构网络中有害的拮抗力,以优化驱动的可控性和效率。我们在一个原型上以及在一个Chrono Engine模拟中对该设计进行了验证,该模拟代表了对轮式张拉整体机器人的首次物理精确模拟。它在俯仰、偏航和滚转运动中分别可达到约58.9°、59.4°和47.1°。该机构作为一种驱动机器人连杆机构展现出良好的敏捷性和可控性,同时保留了张拉整体结构的理想特性。该设计可能会激发更多敏捷张拉整体实现方式的可能性,使未来机器人在不做权衡的情况下具有更高的柔顺性、坚固性和效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bea8/8161459/2e9a843f22f9/biomimetics-06-00030-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验