Huang Zini, Ma Yihan, Yang Xinyi, Yang Xiaoping, Cheng Yinjia, Zhang Aiqing
Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Engineering Technology Research Centre of Energy Polymer Materials, South-Central Minzu University, Wuhan 430074, PR China.
Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Engineering Technology Research Centre of Energy Polymer Materials, South-Central Minzu University, Wuhan 430074, PR China.
Biomater Adv. 2025 Sep;174:214307. doi: 10.1016/j.bioadv.2025.214307. Epub 2025 Apr 11.
Persistent microbial infections and excessive reactive oxygen species (ROS) accumulation severely impede diabetic wound healing. Herein, we developed an ultrasound-switchable BiVO/fullerene piezoelectric heterostructure via a one-pot solvothermal method, enabling on-demand transition between bactericidal action and ROS scavenging for treating infected diabetic wounds. Under 8-min ultrasound (US) irradiation, the heterojunction sonosensitizer leveraged piezoelectric polarization to generate substantial ROS in real-time through a narrowed energy band gap and enhanced charge carrier separation and migration efficiency, resulting in the disruption of bacterial membrane integrity and 99.9 % eradication of methicillin-resistant Staphylococcus aureus (MRSA). Upon US withdrawal, the sonosensitizer spontaneously transitioned to an antioxidative state through fullerene-mediated ROS scavenging, effectively neutralizing excess ROS and restoring cellular redox balance. In an MRSA-infected diabetic wound model, this ultrasound-responsive duality effectively suppressed bacterial proliferation, reduced inflammation, enhanced angiogenesis, and ultimately accelerated wound healing within 14 days. This ultrasound-switchable therapeutic strategy offers promising insights for managing drug-resistant infections and other ROS-mediated biomedical challenges.
持续性微生物感染和过量活性氧(ROS)积累严重阻碍糖尿病伤口愈合。在此,我们通过一锅溶剂热法制备了一种超声可切换的BiVO/富勒烯压电异质结构,实现了杀菌作用和ROS清除之间的按需转换,用于治疗感染性糖尿病伤口。在8分钟超声(US)照射下,异质结声敏剂利用压电极化通过缩小的能带隙实时产生大量ROS,并提高电荷载流子的分离和迁移效率,导致细菌膜完整性破坏,耐甲氧西林金黄色葡萄球菌(MRSA)根除率达99.9%。撤去超声后,声敏剂通过富勒烯介导的ROS清除自发转变为抗氧化状态,有效中和过量ROS并恢复细胞氧化还原平衡。在MRSA感染的糖尿病伤口模型中,这种超声响应二元性有效抑制细菌增殖,减轻炎症,促进血管生成,并最终在14天内加速伤口愈合。这种超声可切换治疗策略为应对耐药感染和其他ROS介导的生物医学挑战提供了有前景的见解。