Suppr超能文献

用于求解分数阶微分方程的高性能自适应步长分数阶数值格式。

High performance adaptive step size fractional numerical scheme for solving fractional differential equations.

作者信息

Shams Mudassir, Alalyani Ahmad

机构信息

Faculty of Engineering, Free University of Bozen-Bolzano, 39100, Bolzano, Italy.

Department of Mathematics, Faculty of Arts and Science, Balikesir University, Balikesir, 10145, Turkey.

出版信息

Sci Rep. 2025 Apr 15;15(1):13006. doi: 10.1038/s41598-025-95613-7.

Abstract

Fractional differential equations have recently gained popularity due to their ability to simulate a wide range of complex processes in various fields, including engineering, physics, biology, and finance. These equations provide a powerful framework for describing phenomena with memory effects and hereditary features that standard integer-order models cannot account for. In this study, we present fractional versions of numerical algorithms specifically designed for solving fractional-order differential equations. We thoroughly investigate the proposed approaches for stability under various fractional parameter values and compare their stability performance with existing methods. The schemes' consistency and local truncation error are calculated to ensure their accuracy. In terms of stability surface, our methods have a larger stability zone than existing fractional schemes. Two engineering applications are addressed utilizing both fixed and adaptive step-length algorithms to assess efficiency. In both cases, our methods outperform existing approaches, as evidenced by less local and global errors, reduced CPU time, and fewer function and derivative evaluations. Our newly developed fractional order technique outperforms modern high-performance algorithms in solving fractional differential equations, demonstrating superior computational efficiency and stability. These findings demonstrate the robust and efficient capabilities of the proposed methods to solve fractional-order problems.

摘要

分数阶微分方程近年来因其能够模拟包括工程、物理、生物和金融等各个领域的广泛复杂过程而受到关注。这些方程为描述具有记忆效应和遗传特征的现象提供了一个强大的框架,而标准整数阶模型无法解释这些现象。在本研究中,我们提出了专门用于求解分数阶微分方程的数值算法的分数阶版本。我们深入研究了所提出的方法在各种分数参数值下的稳定性,并将其稳定性性能与现有方法进行了比较。计算了这些格式的相容性和局部截断误差以确保其准确性。在稳定性区域方面,我们的方法比现有的分数阶格式具有更大的稳定性区域。利用固定步长和自适应步长算法处理了两个工程应用以评估效率。在这两种情况下,我们的方法都优于现有方法,表现为局部和全局误差更小、CPU时间减少以及函数和导数计算次数更少。我们新开发的分数阶技术在求解分数阶微分方程方面优于现代高性能算法,展现出卓越的计算效率和稳定性。这些发现证明了所提出的方法在解决分数阶问题方面的强大和高效能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ead/12000337/7e3978d7ba8f/41598_2025_95613_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验