Nazari-Golshan A
Physics Department, Shahed University, Tehran, 3319118651, Iran.
Sci Rep. 2025 Aug 13;15(1):29636. doi: 10.1038/s41598-025-14318-z.
This study investigates the space-time fractional stochastic Allen-Cahn (STFSAC) equation, a novel extension of the classical Allen-Cahn equation incorporating fractional derivatives and stochastic noise. The model is designed to capture soliton dynamics in complex systems where non-local interactions and randomness are critical, such as plasma physics and materials science. For the first time, we propose the fractional extended sinh-Gordon method (FESGM) and employ the modified [Formula: see text]-expansion method (MGM) to derive exact analytical soliton solutions. Our results demonstrated that noise intensity and fractional parameters significantly influence soliton amplitude, stability, and pattern formation, with increasing stochasticity leading to more complex behavior. The FESGM offered a robust framework for handling fractional stochastic systems, while the MGM provided complementary insights into nonlinear dynamics. The findings were validated through 2D and 3D visualizations, highlighting the interplay between fractional effects and noise. This work advances the understanding of soliton behavior in stochastic fractional systems and provides a foundation for applications in nonlinear optics, disordered media, and phase transitions.
本研究考察了时空分数阶随机艾伦 - 卡恩(STFSAC)方程,它是经典艾伦 - 卡恩方程的一种新型扩展,纳入了分数阶导数和随机噪声。该模型旨在捕捉复杂系统中的孤子动力学,在这些系统中,非局部相互作用和随机性至关重要,例如等离子体物理学和材料科学领域。我们首次提出分数阶扩展双曲正弦 - 戈登方法(FESGM),并采用改进的[公式:见原文]展开法(MGM)来推导精确的解析孤子解。我们的结果表明,噪声强度和分数阶参数会显著影响孤子振幅、稳定性和模式形成,随机性增加会导致更复杂的行为。FESGM为处理分数阶随机系统提供了一个强大的框架,而MGM为非线性动力学提供了补充性见解。通过二维和三维可视化对结果进行了验证,突出了分数阶效应与噪声之间的相互作用。这项工作推进了对随机分数阶系统中孤子行为的理解,并为非线性光学、无序介质和相变等领域的应用奠定了基础。