Sharma Puneet Kumar, Gentleman Steve, Dexter David Trevor, Pienaar Ilse Sanet
Department of Brain Sciences, Imperial College London, London, UK.
Department of Neurosurgery, Imperial College Healthcare Trust, London, UK.
Brain Pathol. 2025 Sep;35(5):e70011. doi: 10.1111/bpa.70011. Epub 2025 Apr 15.
During Parkinson's disease (PD), loss of brainstem-based pedunculopontine nucleus' (PPN) cholinergic neurons induces progressive postural-gait disability (PGD). PPN-deep brain stimulation inconsistently alleviates PGD, due to stereotactic targeting inaccuracies resulting from insufficiently detailed human PPN anatomical descriptions. Relatedly, rodent studies show rostro-caudal clustering of PPN-cholinergic neurons, reflecting functional sub-territories. We applied unbiased cerebro-bilateral 3-dimensional (3-D) stereology to post-mortem PPNs from PD versus neurological-control cases, to estimate total numbers of cholinergic neurons and describe their rostro-caudal distribution. Given ambiguous descriptions of the PPN's confines, we utilized two complimentary definitions of the PPN's anatomical boundaries. The first was based on the structure's gross anatomy, by considering the nucleus as a recognizable "channel" enclosed by distinct white matter fiber tracts (WMFT) encompassing the medial lemniscus, central tegmental tract and decussation of the superior cerebellar peduncle. Second, the PPN was recognized by its histological architecture, as a dense collection of cholinergic neurons (the "Ch5" group) that were immunoreactive for choline acetyltransferase (ChAT), the enzyme responsible for biosynthesis of the neurotransmitter acetylcholine. Many such ChAT-immunoreactive neurons were dispersed within the traversing tracks and hence the PPN's Ch5-based outlining method permitted their stereological capture while also allowing distinction between the PPN's two subnuclei, namely the pars compacta (PPNc) and pars dissipata (PPNd), based on subnuclei-specific cholinergic cytoarchitectural organization. We further reconstructed template data as 3-D renders, revealing gross morphological differences between control and PD-affected PPNs. PD brains revealed significant PPN cholinergic neuronal loss, particularly affecting the PPNd. Control cases showed bimodal clustering of cholinergic neurons, prominently affecting left-sided PPNs. Most PD cases revealed more severe cholinergic neuronal loss in right-sided PPNs, potentially driving symptom lateralization. Our study provides a comprehensive cholinergic cytoarchitectural atlas of the human PPN in health versus during PD.
在帕金森病(PD)中,基于脑干的脚桥核(PPN)胆碱能神经元的丧失会导致进行性姿势步态障碍(PGD)。由于对人类PPN解剖结构描述不够详细导致立体定向靶向不准确,PPN深部脑刺激对PGD的缓解效果并不一致。相关地,啮齿动物研究表明PPN胆碱能神经元存在头-尾聚类,反映了功能亚区。我们对PD患者与神经对照病例的尸检PPN应用无偏倚的双侧脑三维(3-D)体视学,以估计胆碱能神经元的总数并描述其头-尾分布。鉴于对PPN边界的描述不明确,我们采用了两种互补的PPN解剖边界定义。第一种基于该结构的大体解剖,将该核视为一个可识别的“通道”,由围绕内侧丘系、中央被盖束和上小脑脚交叉的不同白质纤维束(WMFT)包围。第二种是根据其组织学结构来识别PPN,它是一群对胆碱乙酰转移酶(ChAT)免疫反应的胆碱能神经元的密集集合,ChAT是负责神经递质乙酰胆碱生物合成的酶。许多这样的ChAT免疫反应神经元分散在穿行的纤维束中,因此基于Ch5的PPN勾勒方法允许对它们进行体视学捕获,同时还能根据亚核特异性胆碱能细胞构筑组织区分PPN的两个亚核,即致密部(PPNc)和弥散部(PPNd)。我们进一步将模板数据重建为三维渲染图,揭示了对照和PD影响的PPN之间的总体形态差异。PD患者的大脑显示出明显的PPN胆碱能神经元丧失,尤其影响PPNd。对照病例显示胆碱能神经元呈双峰聚类,主要影响左侧PPN。大多数PD病例显示右侧PPN的胆碱能神经元丧失更严重,这可能导致症状的侧化。我们的研究提供了健康与PD期间人类PPN的全面胆碱能细胞构筑图谱。