Suppr超能文献

社交媒体上注意力的突发结构是由放大和三元传递性驱动的。

Emergent structures of attention on social media are driven by amplification and triad transitivity.

作者信息

Smith Alyssa H, Green Jon, F Welles Brooke, Lazer David

机构信息

Network Science Institute, Northeastern University, 177 Huntington Avenue, Boston, MA 02115, USA.

Political Science, Duke University, Gross Hall, 140 Science Drive, Durham, NC 27708, USA.

出版信息

PNAS Nexus. 2025 Apr 1;4(4):pgaf106. doi: 10.1093/pnasnexus/pgaf106. eCollection 2025 Apr.

Abstract

As they evolve, social networks tend to form transitive triads more often than random chance and structural constraints would suggest. However, the mechanisms by which triads in these networks transitive are largely unexplored. We leverage a unique combination of data and methods to demonstrate a causal link between amplification and triad transitivity in a directed social network. Additionally, we develop the concept of the "attention broker," an extension of the previously theorized (or "third who joins"). We use an innovative technique to identify time-bounded Twitter/X following events, and then use difference-in-differences to show that attention brokers cause triad transitivity by amplifying content. Attention brokers intervene in the evolution of any sociotechnical system where individuals can amplify content while referencing its originator.

摘要

随着社交网络的发展,与随机概率和结构限制相比,它们往往更频繁地形成可传递三元组。然而,这些网络中三元组实现可传递性的机制在很大程度上尚未得到探索。我们利用数据和方法的独特组合,来证明在有向社交网络中放大与三元组可传递性之间的因果关系。此外,我们提出了“注意力中介”的概念,这是对先前理论化的“第三方加入者”的扩展。我们使用一种创新技术来识别有时间限制的推特/ X关注事件,然后使用双重差分法来表明注意力中介通过放大内容导致三元组可传递性。注意力中介会干预任何社会技术系统的发展,在这些系统中,个体可以在提及内容来源的同时放大内容。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d09/11997304/ba44879b0fc2/pgaf106f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验