Brudner Sam, Zhou Baohua, Jayaram Viraaj, Santana Gustavo Madeira, Clark Damon A, Emonet Thierry
bioRxiv. 2025 Apr 3:2025.03.31.646361. doi: 10.1101/2025.03.31.646361.
Odor cues guide animals to food and mates. Different environmental conditions can create differently patterned odor plumes, making navigation more challenging. Prior work has shown that animals turn upwind when they detect odor and cast crosswind when they lose it. Animals with bilateral olfactory sensors can also detect directional odor cues, such as odor gradient and odor motion. It remains unknown how animals use these two directional odor cues to guide crosswind navigation in odor plumes with distinct statistics. Here, we investigate this problem theoretically and experimentally. We show that these directional odor cues provide complementary information for navigation in different plume environments. We numerically analyzed real plumes to show that odor gradient cues are more informative about crosswind directions in relatively smooth odor plumes, while odor motion cues are more informative in turbulent or complex plumes. Neural networks trained to optimize crosswind turning converge to distinctive network structures that are tuned to odor gradient cues in smooth plumes and to odor motion cues in complex plumes. These trained networks improve the performance of artificial agents navigating plume environments that match the training environment. By recording fruit flies as they navigated different odor plume environments, we verified that flies show the same correspondence between informative cues and plume types. Fly turning in the crosswind direction is correlated with odor gradients in smooth plumes and with odor motion in complex plumes. Overall, these results demonstrate that these directional odor cues are complementary across environments, and that animals exploit this relationship.
Many animals use smell to find food and mates, often navigating complex odor plumes shaped by environmental conditions. While upwind movement upon odor detection is well established, less is known about how animals steer crosswind to stay in the plume. We show that directional odor cues-gradients and motion-guide crosswind navigation differently depending on plume structure. Gradients carry more information in smooth plumes, while motion dominates in turbulent ones. Neural network trained to optimize crosswind navigation reflect this distinction, developing gradient sensitivity in smooth environments and motion sensitivity in complex ones. Experimentally, fruit flies adjust their turning behavior to prioritize the most informative cue in each context. These findings likely generalize to other animals navigating similarly structured odor plumes.
气味线索引导动物找到食物和配偶。不同的环境条件会产生不同模式的气味羽流,使导航变得更具挑战性。先前的研究表明,动物在检测到气味时会逆风转向,而在失去气味时会侧风转向。具有双侧嗅觉传感器的动物还可以检测定向气味线索,如气味梯度和气味运动。目前尚不清楚动物如何利用这两种定向气味线索在具有不同统计特征的气味羽流中引导侧风导航。在这里,我们从理论和实验上研究了这个问题。我们表明,这些定向气味线索为在不同羽流环境中的导航提供了互补信息。我们对真实羽流进行了数值分析,结果表明,在相对平滑的气味羽流中,气味梯度线索对于侧风方向的信息更丰富,而在湍流或复杂羽流中,气味运动线索的信息更丰富。经过训练以优化侧风转向的神经网络会收敛到独特的网络结构,这些结构在平滑羽流中针对气味梯度线索进行调整,在复杂羽流中针对气味运动线索进行调整。这些经过训练的网络提高了在与训练环境相匹配的羽流环境中导航的人工智能体的性能。通过记录果蝇在不同气味羽流环境中的导航情况,我们验证了果蝇在信息丰富的线索和羽流类型之间表现出相同的对应关系。果蝇在侧风方向的转向与平滑羽流中的气味梯度以及复杂羽流中的气味运动相关。总体而言,这些结果表明这些定向气味线索在不同环境中是互补的,并且动物利用了这种关系。
许多动物利用嗅觉寻找食物和配偶,常常在由环境条件塑造的复杂气味羽流中导航。虽然在检测到气味时逆风移动已得到充分证实,但对于动物如何侧风转向以保持在羽流中却知之甚少。我们表明,定向气味线索——梯度和运动——根据羽流结构以不同方式引导侧风导航。梯度在平滑羽流中携带更多信息,而运动在湍流羽流中占主导。经过训练以优化侧风导航的神经网络反映了这种差异,在平滑环境中发展出梯度敏感性,在复杂环境中发展出运动敏感性。在实验中,果蝇调整它们的转向行为,以便在每种情况下优先考虑信息最丰富的线索。这些发现可能适用于其他在类似结构气味羽流中导航的动物。