Li Le, Roy Priyamvada Guha, Liu Yilin, Zhang Zizhao, Xiong Dapeng, Savan Ram, Gokhale Nandan S, Schang Luis M, Das Jishnu, Yu Haiyuan
bioRxiv. 2025 Apr 2:2025.03.28.645946. doi: 10.1101/2025.03.28.645946.
Viral-human protein interactions are critical for viral replication and modulation of the host immune response. Structural modeling of these interactions is vital for developing effective antiviral therapies and vaccines. However, 99% of experimentally determined binary host-viral interactions currently lack structural information. We aimed to address this gap by leveraging computational protein structure prediction methods. Using extensive benchmarking, we found AlphaFold to be the most accurate structure prediction model for host-pathogen protein interactions. We then predicted the structures of 11,666 binary protein interactions across 33 viral families and created the most comprehensive atomic-scale 3D viral-host protein interactomes till date ( https://3d-viralhuman.yulab.org ). By integrating these interactomes with genetic variation data, we identified population-specific signatures of selection on variants coding for interfaces of viral-human interactions. We also found that viral interaction interfaces were less conserved than non-interface regions, a striking trend that is opposite to what is observed for host interfaces, suggesting different evolutionary pressures. Systematic analyses of interface sharing between host and viral proteins binding to the same host protein revealed mutation rate-dependent differences in interface mimicry. Similar mutation rate-dependent differences were seen in the interface sharing between viral proteins binding to a host protein. We also found that the patterns of E6 protein binding to KPNA2 differed between high- and low-risk oncogenic human papillomaviruses (HPVs), and clustering based on these binding patterns allowed the classification of HPVs with unknown oncogenic risk. Our interface mimicry analyses also unveiled a novel mechanism by which herpes simplex virus-1 UL37 suppresses the antiviral immune response through disruption of the TRAF6-MAVS signalosome interaction. Overall, our comprehensive 3D viral interactomes provide a resource at unprecedented scale and resolution that will enable researchers to explore how variation and signatures of selection influence viral interactions and disease progression. This tool also facilitates the identification of conserved and unique interaction patterns across viruses, empowering researchers to generate testable hypotheses and ultimately accelerate the discovery of novel therapeutic targets and intervention strategies.
病毒与人类蛋白质的相互作用对于病毒复制和宿主免疫反应的调节至关重要。这些相互作用的结构建模对于开发有效的抗病毒疗法和疫苗至关重要。然而,目前99%的通过实验确定的二元宿主-病毒相互作用缺乏结构信息。我们旨在通过利用计算蛋白质结构预测方法来填补这一空白。通过广泛的基准测试,我们发现AlphaFold是宿主-病原体蛋白质相互作用最准确的结构预测模型。然后,我们预测了33个病毒家族中11,666个二元蛋白质相互作用的结构,并创建了迄今为止最全面的原子尺度3D病毒-宿主蛋白质相互作用组(https://3d-viralhuman.yulab.org)。通过将这些相互作用组与遗传变异数据整合,我们确定了编码病毒-人类相互作用界面的变体上的群体特异性选择特征。我们还发现,病毒相互作用界面比非界面区域的保守性更低,这一显著趋势与宿主界面的情况相反,表明存在不同的进化压力。对与同一宿主蛋白质结合的宿主和病毒蛋白质之间的界面共享进行系统分析,揭示了界面模拟中依赖于突变率的差异。在与宿主蛋白质结合的病毒蛋白质之间的界面共享中也观察到了类似的依赖于突变率的差异。我们还发现,高危和低危致癌性人乳头瘤病毒(HPV)中E6蛋白与KPNA2的结合模式不同,基于这些结合模式进行聚类可以对致癌风险未知的HPV进行分类。我们的界面模拟分析还揭示了一种新机制,即单纯疱疹病毒1型UL37通过破坏TRAF6-MAVS信号小体相互作用来抑制抗病毒免疫反应。总体而言,我们全面的3D病毒相互作用组以前所未有的规模和分辨率提供了一种资源,使研究人员能够探索变异和选择特征如何影响病毒相互作用和疾病进展。这个工具还有助于识别病毒之间保守和独特的相互作用模式,使研究人员能够生成可测试的假设,并最终加速新型治疗靶点和干预策略的发现。