Suppr超能文献

护理劳动力管理与政策制定中的伦理人工智能:弥合哲学与实践的差距

Ethical Artificial Intelligence in Nursing Workforce Management and Policymaking: Bridging Philosophy and Practice.

作者信息

Park Claire Su-Yeon

机构信息

"SECURE Team for You" (Sweet Spot Consulting Research Team for the Next Generation, You), Center for Econometric Optimization in the Nursing Workforce, Seoul, Republic of Korea.

出版信息

J Nurs Manag. 2025 Apr 8;2025:7954013. doi: 10.1155/jonm/7954013. eCollection 2025.

Abstract

Despite artificial intelligence's (AI) transformative potential in healthcare, nursing workforce scholarship lacks a cohesive theoretical foundation and well-established philosophical stances to guide safe yet ethical, effective yet efficient, and sustainable AI integration into nursing workforce management and policymaking. This gap poses significant challenges in leveraging AI's benefits while mitigating potential risks and inequities. This paper aims to (1) present a philosophical discourse centered on Park's optimized nurse staffing (Sweet Spot) theory and (2) propose a novel theoretical framework with specific methodologies for ethical AI-equipped nursing workforce management and policymaking while providing its philosophical underpinnings. A rigorous philosophical discourse was performed through , grounded in Park's Optimized Nursing Staffing (Sweet Spot) Estimation Theory. This approach synthesizes diverse philosophical perspectives to create a robust foundation for ethical AI integration in nursing workforce management and policymaking. The novel theoretical framework introduces its well-established philosophical underpinnings, bridging with and , for ethical AI-equipped nursing workforce management and policymaking. The framework also provides practical solutions for ethical AI integration while ensuring equity and fairness in nursing workforce practices. This approach consequently offers a groundbreaking pathway toward sustainable AI-equipped nursing workforce management and policymaking that balances safety, ethics, effectiveness, and efficiency. This paper is the first to present a theoretical framework for ethically integrating AI into nursing workforce management and policymaking, grounded in its robust philosophical underpinnings. It stands out for its creativity and originality, making a significant contribution by opening new avenues for emerging research and development at the intersection of AI and healthcare. Specifically, the framework serves as a practical and pivotal resource for researchers, policymakers, and healthcare administrators navigating the complex landscape of AI integration in nursing workforce management and policymaking. Above all, it is worthwhile in that this paper contributes to the broader intellectual discourse in a thought-provoking and timely manner by addressing AI's inherent limitations in healthcare through a theoretical framework embedded in human philosophical and ethical deliberation. Unlike the current practice where AI safety and ethical risk assessment are conducted after AI solutions have been developed, this approach provides proactive guidance. Thereby, it lays the crucial groundwork for future empirical studies and practical implementations toward desirable healthcare decision-making.

摘要

尽管人工智能(AI)在医疗保健领域具有变革潜力,但护理劳动力研究缺乏一个连贯的理论基础和成熟的哲学立场,以指导将安全且符合道德、有效且高效、可持续的人工智能整合到护理劳动力管理和政策制定中。这一差距在利用人工智能的益处同时减轻潜在风险和不公平方面带来了重大挑战。本文旨在:(1)提出以帕克的优化护士人员配置(最佳点)理论为中心的哲学论述;(2)提出一个新颖的理论框架,以及用于符合道德的配备人工智能的护理劳动力管理和政策制定的具体方法,并提供其哲学基础。通过以帕克的优化护理人员配置(最佳点)估计理论为基础,进行了严格的哲学论述。这种方法综合了不同的哲学观点,为在护理劳动力管理和政策制定中符合道德地整合人工智能创造了坚实的基础。这个新颖的理论框架引入了其成熟的哲学基础,为符合道德的配备人工智能的护理劳动力管理和政策制定,在[此处可能缺失具体内容1]与[此处可能缺失具体内容2]之间架起了桥梁。该框架还为符合道德的人工智能整合提供了实际解决方案,同时确保护理劳动力实践中的公平和公正。因此,这种方法为可持续的配备人工智能的护理劳动力管理和政策制定提供了一条开创性的途径,平衡了安全性、道德性、有效性和效率。本文首次提出了一个将人工智能符合道德地整合到护理劳动力管理和政策制定中的理论框架,其基础是强大的哲学基础。它因其创造性和原创性而脱颖而出,通过为人工智能与医疗保健交叉领域的新兴研发开辟新途径做出了重大贡献。具体而言,该框架对于在护理劳动力管理和政策制定中应对人工智能整合复杂局面的研究人员、政策制定者和医疗保健管理人员来说,是一个实用且关键的资源。最重要的是,本文通过一个嵌入人类哲学和伦理思考的理论框架来解决人工智能在医疗保健中的固有局限性,以发人深省且及时的方式为更广泛的学术讨论做出了贡献,这是很有价值的。与当前在人工智能解决方案开发后进行人工智能安全和伦理风险评估的做法不同,这种方法提供了前瞻性指导。从而,它为未来朝着理想的医疗保健决策进行实证研究和实际实施奠定了关键基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5d0/11999746/a493f311a5c9/JONM2025-7954013.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验