Jeyaraman Madhan, Balaji Sangeetha, Jeyaraman Naveen, Yadav Sankalp
Orthopedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai, IND.
Orthopedics, Government Medical College, Omandurar Government Estate, Chennai, IND.
Cureus. 2023 Aug 10;15(8):e43262. doi: 10.7759/cureus.43262. eCollection 2023 Aug.
The integration of artificial intelligence (AI) into healthcare promises groundbreaking advancements in patient care, revolutionizing clinical diagnosis, predictive medicine, and decision-making. This transformative technology uses machine learning, natural language processing, and large language models (LLMs) to process and reason like human intelligence. OpenAI's ChatGPT, a sophisticated LLM, holds immense potential in medical practice, research, and education. However, as AI in healthcare gains momentum, it brings forth profound ethical challenges that demand careful consideration. This comprehensive review explores key ethical concerns in the domain, including privacy, transparency, trust, responsibility, bias, and data quality. Protecting patient privacy in data-driven healthcare is crucial, with potential implications for psychological well-being and data sharing. Strategies like homomorphic encryption (HE) and secure multiparty computation (SMPC) are vital to preserving confidentiality. Transparency and trustworthiness of AI systems are essential, particularly in high-risk decision-making scenarios. Explainable AI (XAI) emerges as a critical aspect, ensuring a clear understanding of AI-generated predictions. Cybersecurity becomes a pressing concern as AI's complexity creates vulnerabilities for potential breaches. Determining responsibility in AI-driven outcomes raises important questions, with debates on AI's moral agency and human accountability. Shifting from data ownership to data stewardship enables responsible data management in compliance with regulations. Addressing bias in healthcare data is crucial to avoid AI-driven inequities. Biases present in data collection and algorithm development can perpetuate healthcare disparities. A public-health approach is advocated to address inequalities and promote diversity in AI research and the workforce. Maintaining data quality is imperative in AI applications, with convolutional neural networks showing promise in multi-input/mixed data models, offering a comprehensive patient perspective. In this ever-evolving landscape, it is imperative to adopt a multidimensional approach involving policymakers, developers, healthcare practitioners, and patients to mitigate ethical concerns. By understanding and addressing these challenges, we can harness the full potential of AI in healthcare while ensuring ethical and equitable outcomes.
将人工智能(AI)整合到医疗保健领域有望在患者护理方面取得突破性进展,彻底改变临床诊断、预测医学和决策制定。这项变革性技术利用机器学习、自然语言处理和大语言模型(LLMs)来像人类智能一样进行处理和推理。OpenAI的ChatGPT是一种先进的大语言模型,在医学实践、研究和教育中具有巨大潜力。然而,随着医疗保健领域的人工智能发展势头增强,它带来了深刻的伦理挑战,需要仔细考虑。这篇全面的综述探讨了该领域的关键伦理问题,包括隐私、透明度、信任、责任、偏差和数据质量。在数据驱动的医疗保健中保护患者隐私至关重要,这对心理健康和数据共享可能产生影响。同态加密(HE)和安全多方计算(SMPC)等策略对于保护机密性至关重要。人工智能系统的透明度和可信度至关重要,尤其是在高风险决策场景中。可解释人工智能(XAI)成为一个关键方面,确保对人工智能生成的预测有清晰的理解。随着人工智能的复杂性为潜在的漏洞创造了条件,网络安全成为一个紧迫的问题。确定人工智能驱动结果中的责任引发了重要问题,关于人工智能的道德行为和人类问责存在争议。从数据所有权转向数据管理能够在符合法规的情况下进行负责任的数据管理。解决医疗保健数据中的偏差对于避免人工智能驱动的不公平现象至关重要。数据收集和算法开发中存在的偏差会使医疗保健差距长期存在。提倡采用公共卫生方法来解决不平等问题,并促进人工智能研究和劳动力中的多样性。在人工智能应用中保持数据质量至关重要,卷积神经网络在多输入/混合数据模型中显示出前景,提供全面的患者视角。在这个不断发展的环境中,必须采取一种涉及政策制定者、开发者、医疗保健从业者和患者的多维度方法来减轻伦理问题。通过理解和应对这些挑战,我们可以在确保伦理和公平结果的同时充分发挥人工智能在医疗保健中的潜力。
Clin Dermatol. 2024
J Multidiscip Healthc. 2024-8-15
Medicine (Baltimore). 2023-12-15
Adv Ophthalmol Pract Res. 2025-7-14
Rev Med Inst Mex Seguro Soc. 2025-8-14
J Med Internet Res. 2025-8-1
NPJ Digit Med. 2025-7-7
Crit Care. 2023-3-21
Sensors (Basel). 2023-1-5
Healthcare (Basel). 2022-9-30