Han Wen-Wen, Fang Jian-Jiang
Department of Emergency, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315100, Zhejiang Province, China.
World J Diabetes. 2025 Apr 15;16(4):104088. doi: 10.4239/wjd.v16.i4.104088.
Sepsis is a severe complication in hospitalized patients with diabetic foot (DF), often associated with high morbidity and mortality. Despite its clinical significance, limited tools exist for early risk prediction.
To identify key risk factors and evaluate the predictive value of a nomogram model for sepsis in this population.
This retrospective study included 216 patients with DF admitted from January 2022 to June 2024. Patients were classified into sepsis ( = 31) and non-sepsis ( = 185) groups. Baseline characteristics, clinical parameters, and laboratory data were analyzed. Independent risk factors were identified through multivariable logistic regression, and a nomogram model was developed and validated. The model's performance was assessed by its discrimination (AUC), calibration (Hosmer-Lemeshow test, calibration plots), and clinical utility [decision curve analysis (DCA)].
The multivariable analysis identified six independent predictors of sepsis: Diabetes duration, DF Texas grade, white blood cell count, glycated hemoglobin, C-reactive protein, and albumin. A nomogram integrating these factors achieved excellent diagnostic performance, with an AUC of 0.908 (95%CI: 0.865-0.956) and robust internal validation (AUC: 0.906). Calibration results showed strong agreement between predicted and observed probabilities (Hosmer-Lemeshow = 0.926). DCA demonstrated superior net benefit compared to extreme intervention scenarios, highlighting its clinical utility.
The nomogram prediction model, based on six key risk factors, demonstrates strong predictive value, calibration, and clinical utility for sepsis in patients with DF. This tool offers a practical approach for early risk stratification, enabling timely interventions and improved clinical management in this high-risk population.
脓毒症是糖尿病足(DF)住院患者的一种严重并发症,常伴有高发病率和死亡率。尽管其具有临床意义,但用于早期风险预测的工具有限。
确定关键风险因素,并评估列线图模型对该人群脓毒症的预测价值。
这项回顾性研究纳入了2022年1月至2024年6月收治的216例DF患者。患者被分为脓毒症组(n = 31)和非脓毒症组(n = 185)。分析了基线特征、临床参数和实验室数据。通过多变量逻辑回归确定独立风险因素,并建立和验证列线图模型。通过其区分度(AUC)、校准度(Hosmer-Lemeshow检验、校准图)和临床实用性[决策曲线分析(DCA)]评估模型性能。
多变量分析确定了脓毒症的六个独立预测因素:糖尿病病程、DF德州分级、白细胞计数、糖化血红蛋白、C反应蛋白和白蛋白。整合这些因素的列线图具有出色的诊断性能,AUC为0.908(95%CI:0.865 - 0.956),内部验证稳健(AUC:0.906)。校准结果显示预测概率与观察概率之间有很强的一致性(Hosmer-Lemeshow P = 0.926)。DCA显示与极端干预方案相比净效益更高,突出了其临床实用性。
基于六个关键风险因素的列线图预测模型对DF患者的脓毒症具有很强的预测价值、校准度和临床实用性。该工具为早期风险分层提供了一种实用方法,能够在这一高危人群中及时进行干预并改善临床管理。