Suppr超能文献

用于低剂量CT肺癌筛查的人工智能:应用场景比较

Artificial Intelligence for Low-Dose CT Lung Cancer Screening: Comparison of Utilization Scenarios.

作者信息

Lee Meesun, Hwang Eui Jin, Lee Jong Hyuk, Nam Ju Gang, Lim Woo Hyeon, Park Hyungin, Park Chang Min, Choi Hyewon, Park Jongsoo, Goo Jin Mo

机构信息

Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.

Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea.

出版信息

AJR Am J Roentgenol. 2025 Jul;225(1):e2532829. doi: 10.2214/AJR.25.32829. Epub 2025 Apr 16.

Abstract

. Artificial intelligence (AI) tools for evaluating low-dose CT (LDCT) lung cancer screening examinations are used predominantly for assisting radiologists' interpretations. Alternate utilization scenarios (e.g., use of AI as a prescreener or backup) warrant consideration. . The purpose of this study was to evaluate the impact of different AI utilization scenarios on diagnostic outcomes and interpretation times for LDCT lung cancer screening. . This retrospective study included 366 individuals (358 men, 8 women; mean age, 64 years) who underwent LDCT from May 2017 to December 2017 as part of an earlier prospective lung cancer screening trial. Examinations were interpreted by one of five readers, who reviewed their assigned cases in two sessions (with and without a commercial AI computer-aided detection tool). These interpretations were used to reconstruct simulated AI utilization scenarios: as an assistant (i.e., radiologists interpret all examinations with AI assistance), as a prescreener (i.e., radiologists only interpret examinations with a positive AI result), or as backup (i.e., radiologists reinterpret examinations when AI suggests a missed finding). A group of thoracic radiologists determined the reference standard. Diagnostic outcomes and mean interpretation times were assessed. Decision-curve analysis was performed. . Compared with interpretation without AI (recall rate, 22.1%; per-nodule sensitivity, 64.2%; per-examination specificity, 88.8%; mean interpretation time, 164 seconds), AI as an assistant showed higher recall rate (30.3%; < .001), lower per-examination specificity (81.1%), and no significant change in per-nodule sensitivity (64.8%; = .86) or mean interpretation time (161 seconds; = .48); AI as a prescreener showed lower recall rate (20.8%; = .02) and mean interpretation time (143 seconds; = .001), higher per-examination specificity (90.3%; = .04), and no significant difference in per-nodule sensitivity (62.9%; = .16); and AI as a backup showed increased recall rate (33.6%; < .001), per-examination sensitivity (66.4%; < .001), and mean interpretation time (225 seconds; = .001), with lower per-examination specificity (79.9%; < .001). Among scenarios, only AI as a prescreener demonstrated higher net benefit than interpretation without AI; AI as an assistant had the least net benefit. . Different AI implementation approaches yield varying outcomes. The findings support use of AI as a prescreener as the preferred scenario. . An approach whereby radiologists only interpret LDCT examinations with a positive AI result can reduce radiologists' workload while preserving sensitivity.

摘要

用于评估低剂量CT(LDCT)肺癌筛查检查的人工智能(AI)工具主要用于辅助放射科医生的解读。其他使用场景(例如,将AI用作预筛查工具或备用工具)值得考虑。本研究的目的是评估不同AI使用场景对LDCT肺癌筛查诊断结果和解读时间的影响。这项回顾性研究纳入了366名个体(358名男性,8名女性;平均年龄64岁),他们在2017年5月至2017年12月期间接受了LDCT检查,这是一项早期前瞻性肺癌筛查试验的一部分。检查由五名阅片者之一进行解读,他们分两个阶段(使用和不使用商用AI计算机辅助检测工具)对分配给他们的病例进行审查。这些解读被用于重建模拟的AI使用场景:作为助手(即放射科医生在AI辅助下解读所有检查)、作为预筛查工具(即放射科医生仅解读AI结果为阳性的检查)或作为备用工具(即当AI提示有漏诊发现时,放射科医生重新解读检查)。一组胸科放射科医生确定了参考标准。评估了诊断结果和平均解读时间。进行了决策曲线分析。与不使用AI的解读相比(召回率22.1%;每结节敏感度64.2%;每次检查特异度88.8%;平均解读时间164秒),AI作为助手时召回率更高(30.3%;P<0.001),每次检查特异度更低(81.1%),每结节敏感度(64.8%;P = 0.86)或平均解读时间(161秒;P = 0.48)无显著变化;AI作为预筛查工具时召回率更低(20.8%;P = 0.02)且平均解读时间更短(143秒;P = 0.001),每次检查特异度更高(90.3%;P = 0.04),每结节敏感度无显著差异(62.9%;P = 0.16);AI作为备用工具时召回率增加(33.6%;P<0.001),每次检查敏感度(66.4%;P<0.001)和平均解读时间(225秒;P = 0.001)增加,每次检查特异度更低(79.9%;P<0.001)。在这些场景中,只有AI作为预筛查工具显示出比不使用AI的解读更高的净效益;AI作为助手时净效益最低。不同的AI实施方法产生不同的结果。研究结果支持将AI作为预筛查工具作为首选场景。一种放射科医生仅解读AI结果为阳性的LDCT检查的方法可以在保持敏感度的同时减轻放射科医生的工作量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验