Weiss Jérôme
Epidemiology and Statistics Unit, Health Directorate, Ministry of Health and Social Security, L-1433 Luxembourg, Luxembourg.
Int J Environ Res Public Health. 2025 Mar 4;22(3):376. doi: 10.3390/ijerph22030376.
This study aims to assess the short-term effects of extreme heat, cold, and air pollution episodes on excess mortality from natural causes in Luxembourg over 1998-2023. Using a high-resolution dataset from downscaled and bias-corrected temperature (ERA5) and air pollutant concentrations (EMEP MSC-W), weekly mortality p-scores were linked to environmental episodes. A distributional regression approach using a logistic distribution was applied to model the influence of environmental risks, capturing both central trends and extreme values of excess mortality. Results indicate that extreme heat, cold, and fine particulate matter (PM) episodes significantly drive excess mortality. The estimated attributable age-standardized mortality rates are 2.8 deaths per 100,000/year for extreme heat (95% CI: [1.8, 3.8]), 1.1 for extreme cold (95% CI: [0.4, 1.8]), and 6.3 for PM episodes (95% CI: [2.3, 10.3]). PM-related deaths have declined over time due to the reduced frequency of pollution episodes. The odds of extreme excess mortality increase by 1.93 times (95% CI: [1.52, 2.66]) per extreme heat day, 3.49 times (95% CI: [1.77, 7.56]) per extreme cold day, and 1.11 times (95% CI: [1.04, 1.19]) per PM episode day. Indicators such as return levels and periods contextualize extreme mortality events, such as the p-scores observed during the 2003 heatwave and COVID-19 pandemic. These findings can guide public health emergency preparedness and underscore the potential of distributional modeling in assessing mortality risks associated with environmental exposures.
本研究旨在评估1998年至2023年期间极端高温、寒冷和空气污染事件对卢森堡自然原因导致的超额死亡率的短期影响。利用来自降尺度和偏差校正后的温度(ERA5)以及空气污染物浓度(EMEP MSC-W)的高分辨率数据集,将每周死亡率p值与环境事件相关联。采用基于逻辑分布的分布回归方法来模拟环境风险的影响,捕捉超额死亡率的中心趋势和极值。结果表明,极端高温、寒冷和细颗粒物(PM)事件显著推动了超额死亡率。估计的归因年龄标准化死亡率分别为:极端高温时每10万人年2.8例死亡(95%置信区间:[1.8, 3.8]),极端寒冷时为1.1例(95%置信区间:[0.4, 1.8]),PM事件时为6.3例(95%置信区间:[2.3, 10.3])。由于污染事件频率降低,与PM相关的死亡人数随时间有所下降。每出现一个极端高温日,极端超额死亡率的几率增加1.93倍(95%置信区间:[1.52, 2.66]),每出现一个极端寒冷日增加3.49倍(95%置信区间:[1.77, 7.56]),每出现一个PM事件日增加1.11倍(95%置信区间:[1.04, 1.19])。诸如重现期和周期等指标将极端死亡事件置于背景之中,例如2003年热浪和新冠疫情期间观察到的p值。这些发现可为公共卫生应急准备提供指导,并突出分布模型在评估与环境暴露相关的死亡风险方面的潜力。