缺氧、机械传感和转化生长因子-β信号传导的布尔网络模型揭示了表型可塑性和突变在肿瘤转移中的作用。
A Boolean network model of hypoxia, mechanosensing and TGF-β signaling captures the role of phenotypic plasticity and mutations in tumor metastasis.
作者信息
Greene Grant, Zonfa Ian, Ravasz Regan Erzsébet
机构信息
Biochemistry and Molecular Biology, College of Wooster, Wooster, Ohio, United States of America.
出版信息
PLoS Comput Biol. 2025 Apr 16;21(4):e1012735. doi: 10.1371/journal.pcbi.1012735. eCollection 2025 Apr.
The tumor microenvironment aids cancer progression by promoting several cancer hallmarks, independent of cancer-related mutations. Biophysical properties of this environment, such as the stiffness of the matrix cells adhere to and local cell density, impact proliferation, apoptosis, and the epithelial to mesenchymal transition (EMT). The latter is a rate-limiting step for invasion and metastasis, enhanced in hypoxic tumor environments but hindered by soft matrices and/or high cell densities. As these influences are often studied in isolation, the crosstalk between hypoxia, biomechanical signals, and the classic EMT driver TGF-β is not well mapped, limiting our ability to predict and anticipate cancer cell behaviors in changing tumor environments. To address this, we built a Boolean regulatory network model that integrates hypoxic signaling with a mechanosensitive model of EMT, which includes the EMT-promoting crosstalk of mitogens and biomechanical signals, cell cycle control, and apoptosis. Our model reproduces the requirement of Hif-1α for proliferation, the anti-proliferative effects of strong Hif-1α stabilization during hypoxia, hypoxic protection from anoikis, and hypoxia-driven mechanosensitive EMT. We offer experimentally testable predictions about the effect of VHL loss on cancer hallmarks, with or without secondary oncogene activation. Taken together, our model serves as a predictive framework to synthesize the signaling responses associated with tumor progression and metastasis in healthy vs. mutant cells. Our single-cell model is a key step towards more extensive regulatory network models that cover damage-response and senescence, integrating most cell-autonomous cancer hallmarks into a single model that can, in turn, control the behavior of in silico cells within a tissue model of epithelial homeostasis and carcinoma.
肿瘤微环境通过促进多种癌症特征来助力癌症进展,这一过程独立于癌症相关突变。该环境的生物物理特性,如基质细胞附着的硬度和局部细胞密度,会影响细胞增殖、凋亡以及上皮-间质转化(EMT)。后者是侵袭和转移的限速步骤,在缺氧的肿瘤环境中会增强,但会受到柔软基质和/或高细胞密度的阻碍。由于这些影响通常是单独研究的,缺氧、生物力学信号与经典的EMT驱动因子TGF-β之间的相互作用尚未得到很好的描绘,这限制了我们预测和预期癌细胞在不断变化的肿瘤环境中行为的能力。为了解决这个问题,我们构建了一个布尔调控网络模型,该模型将缺氧信号与EMT的机械敏感模型整合在一起,其中包括有丝分裂原和生物力学信号的EMT促进相互作用、细胞周期控制和凋亡。我们的模型再现了Hif-1α对增殖的需求、缺氧期间Hif-1α强烈稳定化的抗增殖作用、缺氧对失巢凋亡的保护以及缺氧驱动的机械敏感EMT。我们提供了关于VHL缺失对癌症特征影响的可实验测试的预测,无论是否有继发性癌基因激活。综上所述,我们的模型作为一个预测框架,用于综合健康细胞与突变细胞中与肿瘤进展和转移相关的信号反应。我们的单细胞模型是朝着更广泛的调控网络模型迈出的关键一步,该模型涵盖损伤反应和衰老,将大多数细胞自主癌症特征整合到一个单一模型中,进而可以控制上皮稳态和癌组织模型中虚拟细胞的行为。