Wang Mengting, Guo Wenwen, Lv Jimin, Zhu Yanyun, Ke Zhijian, Mao Haiguang, Qi Lili, Wang Jinbo
School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China.
School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China; College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 310058, China.
Bioorg Chem. 2025 Jun 15;160:108476. doi: 10.1016/j.bioorg.2025.108476. Epub 2025 Apr 14.
This study investigated the interaction mechanisms between α-glucosidase and procyanidin dimers containing varying galloyl moieties. The in vitro inhibitory assay demonstrated that a dose-dependent inhibition on α-glucosidase with IC₅₀ values spanning from 0.29 mg/mL (PCBDG) to 80.24 mg/mL (PCB), highlighting the pivotal role of galloyl groups. Multi-spectral analyses (UV-vis, fluorescence, FT-IR, CD) demonstrated that galloylated procyanidin dimers induced conformational changes in α-glucosidase, altering its secondary structure and hydrophobic microenvironment. DSC and ITC studies indicated PCBDG reduced enzyme thermal stability, and exhibited the highest binding affinity. Molecular docking revealed that PCBDG formed the most stable complex with α-glucosidase via extensive hydrogen bonds, hydrophobic interactions, and π-stacking with key residues, while MD simulations further confirmed its structural stability. These findings emphasized that the number of galloyl moieties enhanced inhibitory potency by optimizing enzyme-ligand interactions, offering insights for designing natural α-glucosidase inhibitors to manage postprandial hyperglycemia.
本研究调查了α-葡萄糖苷酶与含有不同没食子酰基部分的原花青素二聚体之间的相互作用机制。体外抑制试验表明,对α-葡萄糖苷酶存在剂量依赖性抑制,IC₅₀值范围为0.29 mg/mL(PCBDG)至80.24 mg/mL(PCB),突出了没食子酰基的关键作用。多光谱分析(紫外可见光谱、荧光光谱、傅里叶变换红外光谱、圆二色光谱)表明,没食子酰化原花青素二聚体诱导α-葡萄糖苷酶构象变化,改变其二级结构和疏水微环境。差示扫描量热法和等温滴定量热法研究表明,PCBDG降低了酶的热稳定性,并表现出最高的结合亲和力。分子对接显示,PCBDG通过与关键残基形成广泛的氢键、疏水相互作用和π-堆积,与α-葡萄糖苷酶形成最稳定的复合物,而分子动力学模拟进一步证实了其结构稳定性。这些发现强调,没食子酰基部分的数量通过优化酶-配体相互作用提高了抑制效力,为设计天然α-葡萄糖苷酶抑制剂以控制餐后高血糖提供了见解。