Suppr超能文献

不同没食子酰基部分的α-葡萄糖苷酶与原花青素二聚体之间的相互作用机制:多光谱分析和分子动力学模拟

Interaction mechanisms between α-glucosidase and procyanidin dimers with different galloyl moiety: Multi-spectral analysis and molecular dynamics simulation.

作者信息

Wang Mengting, Guo Wenwen, Lv Jimin, Zhu Yanyun, Ke Zhijian, Mao Haiguang, Qi Lili, Wang Jinbo

机构信息

School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China.

School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China; College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 310058, China.

出版信息

Bioorg Chem. 2025 Jun 15;160:108476. doi: 10.1016/j.bioorg.2025.108476. Epub 2025 Apr 14.

Abstract

This study investigated the interaction mechanisms between α-glucosidase and procyanidin dimers containing varying galloyl moieties. The in vitro inhibitory assay demonstrated that a dose-dependent inhibition on α-glucosidase with IC₅₀ values spanning from 0.29 mg/mL (PCBDG) to 80.24 mg/mL (PCB), highlighting the pivotal role of galloyl groups. Multi-spectral analyses (UV-vis, fluorescence, FT-IR, CD) demonstrated that galloylated procyanidin dimers induced conformational changes in α-glucosidase, altering its secondary structure and hydrophobic microenvironment. DSC and ITC studies indicated PCBDG reduced enzyme thermal stability, and exhibited the highest binding affinity. Molecular docking revealed that PCBDG formed the most stable complex with α-glucosidase via extensive hydrogen bonds, hydrophobic interactions, and π-stacking with key residues, while MD simulations further confirmed its structural stability. These findings emphasized that the number of galloyl moieties enhanced inhibitory potency by optimizing enzyme-ligand interactions, offering insights for designing natural α-glucosidase inhibitors to manage postprandial hyperglycemia.

摘要

本研究调查了α-葡萄糖苷酶与含有不同没食子酰基部分的原花青素二聚体之间的相互作用机制。体外抑制试验表明,对α-葡萄糖苷酶存在剂量依赖性抑制,IC₅₀值范围为0.29 mg/mL(PCBDG)至80.24 mg/mL(PCB),突出了没食子酰基的关键作用。多光谱分析(紫外可见光谱、荧光光谱、傅里叶变换红外光谱、圆二色光谱)表明,没食子酰化原花青素二聚体诱导α-葡萄糖苷酶构象变化,改变其二级结构和疏水微环境。差示扫描量热法和等温滴定量热法研究表明,PCBDG降低了酶的热稳定性,并表现出最高的结合亲和力。分子对接显示,PCBDG通过与关键残基形成广泛的氢键、疏水相互作用和π-堆积,与α-葡萄糖苷酶形成最稳定的复合物,而分子动力学模拟进一步证实了其结构稳定性。这些发现强调,没食子酰基部分的数量通过优化酶-配体相互作用提高了抑制效力,为设计天然α-葡萄糖苷酶抑制剂以控制餐后高血糖提供了见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验