Suppr超能文献

使用配对的生物力学-组织学有限元分析建模来模拟大型机械活性培养系统(BigMACS),以推导力学生物学设计关系。

Simulating big mechanically-active culture systems (BigMACS) using paired biomechanics-histology FEA modelling to derive mechanobiology design relationships.

作者信息

Schoenborn Sabrina, Yuan Mingyang, Fell Cody A, Liu Chuanhai, Fletcher David F, Priola Selene, Chan Hon Fai, Woodruff Mia, Li Zhiyong, Toh Yi-Chin, Allenby Mark C

机构信息

BioMimetic Systems Engineering (BMSE) Lab, School of Chemical Engineering, University of Queensland (UQ), St Lucia QLD 4072, Australia.

Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Kelvin Grove, Queensland, Australia.

出版信息

Biofabrication. 2025 Apr 28;17(3). doi: 10.1088/1758-5090/adcd9f.

Abstract

Big mechanically-active culture systems (BigMACS) are promising to stimulate, control, and pattern cell and tissue behaviours with less soluble factor requirements. However, it remains challenging to predict if and how distributed mechanical forces impact single-cell behaviours to pattern tissue. In this study, we introduce a tissue-scale finite element analysis framework able to correlate sub-cellular quantitative histology with centimetre-scale biomechanics. Our framework is relevant to diverse BigMACS, including media perfusion, tensile-stress, magnetic, and pneumatic tissue culture platforms. We apply our framework to understand how the design and operation of a multi-axial soft robotic bioreactor can spatially control mesenchymal stem cell (MSC) proliferation, orientation, differentiation to smooth muscle, and extracellular vascular matrix deposition. We find MSC proliferation and matrix deposition to positively correlate with mechanical stimulation but cannot be locally patterned by soft robot mechanical stimulation within a centimetre scale tissue. In contrast, local stress distribution was able to locally pattern MSC orientation and differentiation to smooth muscle phenotypes, where MSCs aligned perpendicular to principal stress direction and expressed increased α-SMA with increasing 3D Von Mises Stresses from 0 to 15 kPa. Altogether, our new biomechanical-histological simulation framework is a promising technique to derive the future mechanical design equations to control cell behaviours and engineer patterned tissue.

摘要

大型机械活性培养系统(BigMACS)有望在减少可溶性因子需求的情况下刺激、控制细胞和组织行为并使其形成特定模式。然而,预测分布式机械力是否以及如何影响单细胞行为以形成组织模式仍然具有挑战性。在本研究中,我们引入了一个组织尺度的有限元分析框架,该框架能够将亚细胞定量组织学与厘米尺度的生物力学联系起来。我们的框架适用于多种BigMACS,包括培养基灌注、拉伸应力、磁性和气动组织培养平台。我们应用该框架来了解多轴软机器人生物反应器的设计和操作如何在空间上控制间充质干细胞(MSC)的增殖、取向、向平滑肌的分化以及细胞外血管基质沉积。我们发现MSC的增殖和基质沉积与机械刺激呈正相关,但在厘米尺度组织内不能通过软机器人机械刺激进行局部模式化。相比之下,局部应力分布能够使MSC的取向和向平滑肌表型的分化形成局部模式,其中MSC垂直于主应力方向排列,并随着三维冯·米塞斯应力从0增加到15 kPa而表达增加的α-平滑肌肌动蛋白(α-SMA)。总之,我们新的生物力学-组织学模拟框架是一种很有前景的技术,可用于推导未来控制细胞行为和构建图案化组织的机械设计方程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验