Abualigah Laith, Alomari Saleh Ali, Almomani Mohammad H, Abu Zitar Raed, Migdady Hazem, Saleem Kashif, Smerat Aseel, Snasel Vaclav, Gandomi Amir H
Computer Science Department, Al al-Bayt University, Mafraq, 25113, Jordan.
Faculty of Information Technology, Jadara University, Irbid, 21110, Jordan.
Sci Rep. 2025 Apr 16;15(1):13079. doi: 10.1038/s41598-025-95888-w.
The Aquila Optimizer (AO) is a newly proposed, highly capable metaheuristic algorithm based on the hunting and search behavior of the Aquila bird. However, the AO faces some challenges when dealing with high-dimensional optimization problems due to its narrow exploration capabilities and a tendency to converge prematurely to local optima, which can decrease its performance in complex scenarios. This paper presents a modified form of the previously proposed AO, the Locality Opposition-Based Learning Aquila Optimizer (LOBLAO), aimed at resolving such issues and improving the performance of tasks related to global optimization and data clustering in particular. The proposed LOBLAO incorporates two key advancements: the Opposition-Based Learning (OBL) strategy, which enhances solution diversity and balances exploration and exploitation, and the Mutation Search Strategy (MSS), which mitigates the risk of local optima and ensures robust exploration of the search space. Comprehensive experiments on benchmark test functions and data clustering problems demonstrate the efficacy of LOBLAO. The results reveal that LOBLAO outperforms the original AO and several state-of-the-art optimization algorithms, showcasing superior performance in tackling high-dimensional datasets. In particular, LOBLAO achieved the best average ranking of 1.625 across multiple clustering problems, underscoring its robustness and versatility. These findings highlight the significant potential of LOBLAO to solve diverse and challenging optimization problems, establishing it as a valuable tool for researchers and practitioners.
天鹰座优化器(AO)是一种新提出的、能力很强的元启发式算法,它基于天鹰座鸟类的狩猎和搜索行为。然而,由于其探索能力有限且有过早收敛到局部最优的倾向,AO在处理高维优化问题时面临一些挑战,这可能会降低其在复杂场景中的性能。本文提出了一种对先前提出的AO的改进形式,即基于局部对立学习的天鹰座优化器(LOBLAO),旨在解决此类问题,尤其提高与全局优化和数据聚类相关任务的性能。所提出的LOBLAO包含两项关键改进:基于对立学习(OBL)策略,它增强了解的多样性并平衡了探索和利用;以及变异搜索策略(MSS),它降低了局部最优的风险并确保对搜索空间进行稳健的探索。在基准测试函数和数据聚类问题上的综合实验证明了LOBLAO的有效性。结果表明,LOBLAO优于原始的AO和几种先进的优化算法,在处理高维数据集方面展现出卓越的性能。特别是,LOBLAO在多个聚类问题上实现了1.625的最佳平均排名,突出了其稳健性和通用性。这些发现凸显了LOBLAO解决各种具有挑战性的优化问题的巨大潜力,使其成为研究人员和从业者的宝贵工具。